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In this paper we propose an artificial intelligence (Al) based framework for maintenance decision-making and
optimization of multi-state component systems with imperfect maintenance. Our proposed framework consists of
two main phases. The first aims at constructing artificial neural network (ANN) based predictors to forecast system’s
reliability and maintenance cost. The second refers to the use of deep reinforcement learning (DRL) algorithms
to optimize maintenance policy which can deal with large scale applications. Numerical results show that ANN is
suitable to reliability, maintenance cost forecasting and DRL is a potentially powerful tool for maintenance decision-

making and optimization.
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1. Introduction

Condition-based maintenance (CBM) refers to
maintenance policy that makes decisions based
on system’s health information. Thanks to recent
advances in sensing technology, CBM nowadays
becomes sophisticated in maintenance planning
for industrial system, especially for multi-state
component system (MSCS) which is defined as
the multi-component system where the deteriorat-
ing process of each component can be discretized
into a finite set of states ranging from “as good as
new” to failure [Karabag et al. (2020); Do et al.
(2019); Yousefi et al. (2020)].

CBM scheduling for MSCS is a challenging prob-
lem due to the dependencies between components
in terms of economy, stochasticity and structure
[Nicolai and Dekker (2008)]. Among these depen-
dencies, economic dependence, whereby the joint
maintenance of several components is cheaper
(positive dependence) or more expensive (nega-
tive dependence), is usually considered to allow
opportunistic and group maintenance to be carried
out to reduce total cost.

In addition, scaling algorithms to deal with large
scale system is another issue for maintenance
decision-making (MDM) of MSCS. However, the
combination of reinforcement learning (RL) and
deep learning creating a new field called DRL
seem to the answer for this problem. Particularly,
Zhang and Si (2020) minimized maintenance cost
for multi-component system with dependent com-
peting risks. DRL is also employed to optimize
structure maintenance policy for the long-span

cable-stayed bridge with 263 components in [Wei
et al. (2020)]. More recently, preventive main-
tenance policy for general serial production line
with intermediate buffers using DRL has been
studied in [Huang et al. (2020)] and the learned
policy surprisingly showed that opportunistic and
group maintenance are occasionally conducted.

In DRL, one of the most important things is
how to properly construct an environment with
which an agent can interact to find the best policy.
However, almost all papers using DRL for MDM
optimization assume that some parts of the envi-
ronment such as maintenance cost model, system
structure to be known at hand making them less
practical. Therefore, we propose in this paper an
Al based framework that can learn the system’s
characteristics from historical maintenance data
and can tackle with large scale MDM problem.
The proposed framework consists of two primary
phases. The first aims at creating ANN based pre-
dictors to forecast reliability and maintenance cost
of the system. The second refers to the use DRL
algorithms to find optimal maintenance policy.

The rest of the paper is organized as follow-
ing. Section 2 is devoted to the general descrip-
tion of the system, collected data and problem
statement formulation. ANN based predictors for
system’s reliability, maintenance cost and DRL
based maintenance policy optimization process
are presented in section 3. The simulation results
of proposed framework are depicted and analyzed
in section 4. Finally, the last section presents the
conclusion and the future work.
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2. Assumptions and system description

2.1. Multi-state component systems and
its maintenance operations

We consider a complex system being composed
of N non-identical components which are re-
dundantly constructed and suffer from stochastic
deterioration processes that are independent to
each other. The system is monitored periodically
at time T, = k.Ap (kK = 0,1,2,...) where
Ar is inter-inspection time [Alaswad and Xiang
(2017)]. In addition, each component has m; +
1 discrete health condition states including new
state, m; — 1 degraded states and failure state. By
denoting ¢ as the state of " component at time
T}, the component’s state can be expressed as:

0, if component 7 is new
7, if component ¢ is in degraded state j
m;, if component 7 fails

x), =

(D
Furthermore, the degradation between two succes-
sive inspection times of a component is assumed
to obey a discrete Markov chain, however, whose
transition matrix is unknown.

Both corrective maintenance (CM) and preven-
tive maintenance (PM) strategy are considered
for all components of MSCS. In addition, it is
supposed that each component can be individually
repaired and maintenance action is only executed
at inspection time. Besides, it is also assumed
that both perfect and imperfect maintenance are
performed for CM and PM. Specifically, perfect
maintenance restores the component to new state
with the cost of ¢”. Conversely, imperfect main-
tenance originated from several causes such as
the lack of spare parts, human resources [Pham
and Wang (1996)] implies that the component’s
state after maintenance is somewhere between the
state before maintenance and “as good as new”
[Do and Bérenguer (2012)]. The cost of imperfect
maintenance is denoted as ¢'P which is smaller
than c”.

It should be noted that maintenance of MSCS in
reality usually benefits from single or multiple
setup costs which can be saved if a group of com-
ponents is maintained simultaneously due to the
economic dependence between them [Nicolai and
Dekker (2008)]. In addition, the system downtime
caused by the failure of critical components is
also an opportunity for the maintenance of other
components.

2.2. Data description and maintenance
optimization problem

In this work, we assume that the historical
maintenance operation for aforementioned MSCS

is collected in a dataset which has the form
{sk, s}, i, hi.} [Do et al. (2019)] described as
belows.

® 5 = [mi 2 ay ... 12’] is the system’s state
before maintenance at time 7.
’ 7 ! ’ .
o s = [zt a7 23 ... 2] is the system’s state

after maintenance at time 7. It should be noted
that the maintenance duration is small and then
can be neglected.
e ;" is the system’s maintenance cost at time 7}.
e hy is the system’s reliability after maintenance
up to time step Ty 1.

In reality, this dataset is evidently not complete
due to two main reasons. Firstly, several states are
rare or just appeared in some specific conditions
making them difficult to be recorded. Secondly,
it is impossible to have the dataset consisting of
all cases of the pair {si, s}, } because the number
of such pairs increases exponentially when the
number of components as well as the number
of states per component increases as depicted in
table 1. In particular, for the system described in
previous section, the complete dataset has a total

N
of T] 7(m"i+l)2(m'i+2) elements.
i=1

Table 1. Size of full dataset corresponding to
the number of components and the number of
states per component of MSCS.

N m; Size of full dataset
3 1 27

3 2 216

3 3 1000

3 4 3375

5 1 243

5 2 7776

5 3 100000

5 4 759375

10 1 59049

10 2 60466176

10 3 10000000000
10 4 576650390625

Large state space lead to large imperfect mainte-
nance action space causing difficulties for classi-
cal maintenance methods, see for instance [Nico-
lai and Dekker (2008); Zhang and Si (2020);
Kuhnle et al. (2019); Skordilis and Moghaddass
(2020); Liu et al. (2020)].

Therefore, the question arising here is how to de-
sign a method that can benefit from the historical
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data above to find optimal maintenance policy
taking into consideration imperfect maintenance
actions and can cope with large scale problem.
To overcome this issue, we propose in this paper
an artificial intelligence (AI) based framework for
MDM to deal with large MSCS. The details of this
framework are presented in the following.

3. Al based framework for maintenance
decision-making

The proposed framework consists of two main
phases as shown in figure 1. The first refers to
training process of maintenance cost and system’s
reliability predictor. The second is involved in
constructing a model of the system that employs
trained ANNs from the first phase and in training
the DRL agent to optimize maintenance policy
by letting it interact with the constructed model.
The details of this framework are presented in the
following sections.

3.1. Reliability and maintenance cost
model learning

Traditional reliability prediction methods can only
be applied to small MSCS due to difficulties in
describing the distribution of time to failure for
the huge one. Similarly, the complex structure and
the complicated interdependence of real industrial
systems also cause the issues for maintenance cost
forecasting.

In order to overcome these challenges, ANN is
chosen as predictor in the proposed framework
because it can be applied to large scale problem
[Do et al. (2019)] thanks to the fast development in
parallel computational hardware such as graphics
and tensor processing unit and software (PyTorch,
TensorFlow) dedicated for ANN reducing the time
for training and testing.

Specifically, two fully connected feed forward
ANNs are used to predict maintenance cost
and system’s reliability separately. The network’s
structure is illustrated in figure 2. In particular,
the input for each ANN is an array consisting of
state before maintenance s; and the state after
maintenance 3;, and the output is maintenance
cost ¢l or system’s reliability hj,. Therefore, we
can denote ANN-based predictors for reliability
and maintenance cost prediction as f" (s, s},) and

f¢(sk, s,), respectively.

It should be noted that the hyper parameters for
training ANNs such as the number of epochs,
hidden layers and the number of neurons per
each hidden layer ... need to be carefully chosen
to avoid the case of underfitting and overfitting.
In addition, ADAM algorithm [Kingma and Ba
(2014)] which is an extension of stochastic gra-

dient descent, is highly recommended as the opti-
mizer for prediction task due to its accuracy and
time-efficiency according to Do et al. (2019).

After training, ANNs are used in the following
section to construct the environment with which
DRL agent can interact to optimize maintenance
policy.

3.2. DRL based maintenance decision
optimization

In this second phase of the proposed framework,
DRL is used for MDM optimization. Specifically,
the environment construction procedure and agent
training process are presented in section 3.2.1 and
section 3.2.2, respectively.

3.2.1. Environment construction

The environment also known as the simulator, is
modeled by a Markov decision process (MDP)
which is a tuple of five components: state space,
action space, transition function, reward function
and discount factor. The formal definition of these
components is presented in the following.

State space The state space S is a set covering
all possible states of the system. In particular,

the system’s health state at time 7}, is defined as
Sp = [3711@ z7 ... ka] where z}, i = 1, N, is the

degradation level of i*" component at that time.

Action space The action space A is a set of all
possible actions. The action chosen at time 7} is
denoted as ar = [a} a} ... a}] in which af,
i =1, N, is the component’s action. In this work,
deterministic maintenance action is investigated
which means that state after maintenance of a
component can be transitioned to a specific state
between state before maintenance and "as good as
new” by the following:

Ty, =T, — ay,

2

where r}; is the state after maintenance of com-
ponent ¢ at time 7Tj. Therefore, the value of aj,
belongs to the set {0,1,...,m;} and should be
understood flexibly. For instance, aj, = 2 cor-
responds to perfect maintenance if the current
state is 2 or basically is understood as moving
the component to state 1 if current state is 3 as
implementing imperfect maintenance action. In
addition, we can notice that some actions do not
exist for a given component’s state. For example,
if component is in state 2 and the action number
3 and 4 are then not feasible. Hence, these actions
should be avoided.

Reward function The reward function R gives
a measure of action’s quality at a specific state.
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Phase 1: Reliability and maintenance Phase 2: DRL based maintenance decision
cost model learning optimization
S an Trained skl | T Optimal
Dataset LN k ,| ANNs ST maintenance
ANNs L) | Thet policy
- — Environment
S hp
Maintenance cost and s Perfor
reliability prediction Zit‘i’;? N
using trained ANNs '
2 In
Reward
tion
Degradation
modeling
Fig. 1. Illustration of artificial intelligence based framework for maintenance decision-making
is less than a small positive number 7, the system
Input layer Hidden layers Output layer then fails at IHSPCCUOH time.

Reliability
(Maintenance

cost)

Fig. 2.  ANN architecture for maintenance cost and
reliability predictor

In this work, the objective of reward function is
to minimize total cost ¢j. Therefore, reward rj, at
time 77}, is defined as follows.

3

Specifically, ¢ includes cost ¢} predicted by
ANN and some extra downtime costs at time 7},.
In particular, if the failure of a component causing
the failure of the system, downtime cost s
then added to total cost. Additionally, a potential
downtime cost after maintenance proportional to
hy, is also considered. Therefore, total cost ¢y, is
computed according to the below equation.

T = —Ck

=0+ (1—hy).ef + I,f.cf

= (s 55+ (1= S (5w 54)) o + ILf

4

where [ ,{ is equal to one if the system is not func-
tioning at time 7} or is equal to zero otherwise.
Although the system’s structure is unknown, we
can still infer the system’s failure via its reliability
by using the predictor. In particular, if " (s, sx)

It should be noted that in the case of choosing
infeasible actions at a given state, cj, is set to be
very high.

Discount factor The last element in MDP is dis-
count factor v € [0,1) used to guarantee the
convergence of infinite cumulative reward as well
as to control the relative impact of future reward
[Zhang and Si (2020)].

3.2.2. Agent training process

The training process is implemented by letting the
agent interact with the environment. Specifically,
at inspection time 7}, the agent observes state
before maintenance sj. Based on this observation,
the agent chooses an action to interact with the
environment. After that, the system transitions to
state after maintenance sj, and then degrades to
next state Sp41 at time 7j1. The reward at time
T}, is computed using 3.

The objective of training process is to optimize
policy m(sg,ar) = Pr(Ay = ap | Sk = si)
describing the conditional probability of chosen
action Ay = ay given state Sy = si in terms of
maximizing the action-value function defined as
q(sk,ar) = E[Gy | sg,ax] where G, = Ry, +
YRipi1 + v2Rigy2 + ... (note that the upper-
case character denotes random variable and the
lowercase one denotes its values). The theory of
RL specifies that optimal policy 7* can be ob-
tained from optimal action-value function denoted
as ¢*(sk,ar) = maxyq(sg,ar) by using the
following equation.

(&)

7" (ax) = argmax q” (si, a)
a

Therefore, the problem of computing optimal
action-value function is a primary concern in
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many different RL algorithms. Tabular methods
such as Q-learning have one major drawback that
it cannot be applied for applications with large
scale of state-action space because these require
a lot of memory. Hence, these approaches are
evidently not suitable for optimizing maintenance
policy of huge MSCS.

Fortunately, DRL provides a powerful framework
to tackle with this challenge. In particular, DRL
algorithms use ANN to approximate action-value
function which is much more flexible than table-
based approaches [Zhang and Si (2020)]. Deep Q
network (DQN) is the first DRL algorithm which
can solve real world problem at human level
[Mnih et al. (2015)]. However, the performance
of DQN in some situations is very poor due to
large overestimation of action values. In order to
overcome this issue, Double DQN (DDQN) is
proposed which is based on the theory of double
estimators [Van Hasselt et al. (2016)]. Due to the
advantage of DDQN, it is chosen to find optimal
maintenance policy in the proposed framework.

In particular, DDQN parameterizes action-value
function using two ANNs which are policy
and target network denoted as ¢(s,a,w) and
G(s,a,wy), respectively. Policy network is used
for selecting action given the current state and is
updated frequently. In contrast, target network are
copied from policy network after every Nig,get
steps and aims at computing target y;, for updating
policy network following below equation.

Yk < i+ V4(sp41, argmax q(spp1, a, w), wy)
a

(6)
It should be noted that policy network is updated
using data from experience replay buffer. This
kind of memory plays a vital role in all DRL
algorithms, which allows not only to gain the i.i.d.
assumption required by gradient descent based
algorithms but also to exploit the rare experiences
to update deep neural network more than one time
[Schaul et al. (2015)]. Specifically, at each time
step, the experience (Sg, Gk, Tk, Sk+1) is stored in
the buffer that has fixed length of [V}, and functions
following first-in first-out mechanism.

4. Numerical studies

This section aims at illustrating how the proposed
framework is applied to optimize maintenance
policy for the system described in section 2.1 with
N = 5 and m; = 4. The system’s structure is
shown in figure 3. As stated in section 2.2, only
historical dataset of system’s state before and after
maintenance with corresponding reliability and
maintenance cost is provided. The visualization of
this data set is depicted in [Do et al. (2019)].

The detail description of data generation process

and the system’s parameters are given in Ap-
pendix A.

Fig. 3.

Five-component system

4.1. Reliability and maintenance cost
model learning

The dataset is divided into two different sets which
are training and evaluation set according to split
ratio of 4:1. The hyper parameters for training
process are presented in table 2. Mean squared
loss is used to evaluate the performance of the
models. The obtained results are illustrated in the
figure 4 and 5 showing the convergence of mean
squared loss for reliability and maintenance cost
predictor on both training and validation set.

—— Training loss

== Validation loss

Mean squared loss

0 100 200 300 400 500
Epoch

Fig.4. The convergence of training and validation loss
for maintenance cost predictor

4.2. Maintenance optimization

In this section, DDQN algorithm is implemented
to optimize maintenance decision. In particular,
policy and target network are composed of three
fully connected layers which have 128, 128 and
32 neurons, respectively. The number of inputs is
equal to N. The size of output layer is equal to
the size of action space which is 3125. The other
hyper parameters related to training process are
presented in table 3.
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—— Training loss
=== Validation loss

an squared loss

Mean
e
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&

0.004

0.002

0.000
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Epoch

Fig.5. The convergence of training and validation loss
for reliability predictor

Table 2. Hyper parameters for training ANN based
predictors.

fc(skv‘s;c) fr(skvs;c)
Number of epochs 500 200
Hidden layers 100, 100, 50 30, 50
Initial learning rate 0.01 0.005
Batch size 32 32
Activation function ReLU ReLU

Note: Learning rate is multiplied with the factor of 0.8 after
every 50 epochs.

Table 3. Hyper parameters for training DDQN agent.
Nirain  Np Nini Ntagert « Y
2x10% 5x10° 128 25000 0.001 0.9

In order to supervise training process, after every
5 x 102 steps, the latest policy network ¢(s, a, w)
is employed to interact with the environment 10*
times and we then observe the average of total cost
per step. The numerical experiment is deployed
using PyTorch framework on a desktop computer
with 3.91 GHz CPU, 64 GB RAM and 2 GB
dedicated GPU memory. The total training time
is about 5.18 hours.

The convergence of average cost during training
process is illustrated in figure 6. In this picture, we
can notice that the policy starts to converge since
step 10 x 10° with the corresponding average is
about 181.8.

Average cost
5 8 ¥
1=y S S

o
S
S

0 2 5 8 0 12 15 18 2
Step (x10%)

Fig. 6. Average cost in the case of deterministic main-
tenance action

4.3. Comparison with traditional
maintenance approach

For large MSCS, DRL algorithms can be used
for MDM optimization with deterministic actions
while it is difficult for traditional approaches
that optimize predefined preventive maintenance
thresholds. Therefore, in order to make the com-
parison between the proposed framework and
classical maintenance methods, we adjust mainte-
nance action to have random quality. In particular,
there exits three possible actions for each compo-
nent which are “do nothing”, “replacement” and
“imperfect maintenance”. ”Doing nothing” means
that no maintenance is performed. If “replace-
ment” action is carried out, state after mainte-
nance is as good as new. Finally, if imperfect
maintenance is executed, state after maintenance
is distributed uniformly in the interval from new
state to state before maintenance.

The traditional maintenance policy used in this
section is presented in [Do and Bérenguer (2012)].
The detail maintenance operation for component ¢
is described in the following:

e If 2j, = m,;, the component is in failed state.
Therefore, “replacement” action is immediately
carried out.

o If [; < zj < m,; where [; is preventive mainte-
nance threshold, the system is still operational
but badly. Hence, “imperfect maintenance” is
implemented.

o If z; < [;, the system is functioning well.
Accordingly, do nothing” action is chosen.

The grid-based search algorithm is employed to
optimize preventive maintenance thresholds and
the total time for searching is about 0.84 hours.
The optimal control limit vector is [2 3 3 1 2] and
the corresponding average cost is 254.6.
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The DDQN agent is trained through 20 x 10* steps
and the convergence of average cost during train-
ing process is illustrated in figure 7. The total time
for training is about 0.92 hours and the minimal
value is 194.5 that is smaller (1 — 194.5/254.6 =
23.6%) than the one obtained by traditional ap-
proach.

200

0 2 5 8 0 12 15 18 20
Step (x10)

Fig. 7. Average cost in the case of random quality
maintenance action

5. Conclusions

In this work, an Al based framework for MDM
optimization is proposed which consists of two
main phases. The first aims at constructing ANN
based predictors for system’s reliability and main-
tenance cost. The second refers to the use of
DRL algorithms to optimize maintenance decision
which can deal with large scale applications. The
obtained results show that ANN is suitable to the
reliability, maintenance cost forecasting and DRL
is a potentially powerful framework for MDM
optimization considering the effects of imperfect
maintenance.

Our feature work will focus on the estimation
of time-dependent transition matrix using ANN
and the use of multi-agent DRL for optimizing
maintenance policy.
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Appendix A. Data generation

The system considered in section 4 is composed of 5
non-identical components as shown in figure 3. The

degradation transition matrices of the components are
given as belows.

0.3 0.3 0.2 0.15 0.05
0 0203 03 0.2
0 0 0304 03
0 0 0 04 06
0 0 0 O 1

P =

[0.1 0.3 0.3 0.2 0.1]
0 0.10.30.30.3
0 0 030304
0 0 0 0208

000 0 0 1]

(02020303 0]
0 01030303
0 0 020305
0 0 00307

L0 0 0 0 1]

0.25 0.3 0.2 0.2 0.05
0 010203 04
P,=| 0 0 0203 0.5
0 0 0 02038
0 0 0 0 1

0.25 0.2 0.3 0.2 0.05
0 0.150.20.4 0.25
Ps=| 0 0 0204 04
0 0 0 0208
0 0 0 0 1

Py =

The other system’s parameters are given in the table 4.

Table 4. Parameters of 5-component system.

N m; c" c® c© of B

5 4 50 20 30

The maintenance cost ¢j* at time T}, is calculated by
using the formula in equation A.1.

5 5
FES N S L o RN
i=1 i=1
where:
o ¢®, ¢/ are setup cost and inspection cost of one

component, respectively.
I 1, if maintenance is carried out

° =

0, if maintenacne is not carried out

e ¢*° is maintenance cost of ith component at time
T}.. To simplify the notation, we get rid of the sub-
scription % in all formulas. Therefore, if no main-
tenance action is implemented, then ¢ = 0. If
perfect maintenance is carried out, ¢ is then equal
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to replacement cost ¢”. If imperfect maintenance is
implemented, ¢ is calculated following the equa-
tion below [Do and Bérenguer (2012)].

e =P = cr.(uk)ﬁ (A.2)

where:

-cis constanf for replacement cost

- up = % where xj, and 37;@ are state be-
fore and after maintenance of the component,
respectively.

— [ is real positive number representing the
imperfect maintenance characteristics of the
component.

Furthermore, the system’s reliability hj, describes the
survival probability from the time after maintenance to
the next time step is the function of all component’s
reliability and is calculated following equation below.

hy = hy. [1 - (1 - hi.hi) . (1 - hi)] B (A3)

where hfc =1- Pi(x};,mi) is the probability that
component % survives until next schedule inspection.
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