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Abstract:

Circular blades are well known in sawmills and other fabrication sites such as tyre industries.
The cutting process produces wear on the blades which gradually decreases the quality of the
goods being cut, and, eventually, it might cause the stoppage of the production line. At the
same time, assessing the wear of the blades to avoid these quality losses and breakdowns is not
easy, as there are many factors affecting the cutting process and the direct inspection of wear

is not practical.

This work proposes the development of a Digital Twin that is linked to the manufacturing line.
The twin includes a wear model that is based on the data generated in the line, and, hence, it
can be used to identify the wear status of the blade as well as to prognose the development of

that wear based on future cutting schedules.
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1. INTRODUCTION

Circular blades are tools widely used for cutting purposes
with a considerable presence in the wood machining in-
dustry. For that reason, most of the works related to cir-
cular blades wear assessment are related to wood material
science or wood machining. Nevertheless, cutting is not
only present on sawmills, other industries such as the tyre
industry also employ circular blades for tread cutting,
and the faults and stoppages derived from worn blades
have great impact on the tyre production line. For that
reason, developing blade wear assessment systems is of
great interest.

Assessing wear on a circular blade is complex. The type
of material (which impacts on tool wear mechanism), the
combination of the different cutting parameters and the
mechanical properties of the workpiece make it a com-
plex process to predict (Nasir and Cool, 2020). Common
methods to evaluate wear in laboratories are scanning
electron microscopy and energy-dispersive spectrometry
(Porankiewicz et al., 2015). However, they can not be
used for online wear monitoring. For that reason, some
works have tried to detect blade condition based on sensor
measurements. For example, in Mohammadpanah et al.
(2019), different saw deviations or faults are identified by
means of microphone, accelerometer, temperature, acous-
tic emission (AE) and a displacement sensor; other works
measure wear by means of acoustic emissions alone, as
Siebald et al. (2017); Lemaster et al. (1985) and Nasir
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et al. (2019). Although promising, the extrapolation of
laboratory level sensor data models to real conditions has
been questioned (Lau et al., 2000; Nasir and Cool, 2020),
particularly in harsh environments as sawmills (Nasir and
Cool, 2020).

The techniques used in the past for blade wear assessment
show some limitations in practice. Regarding pure physical
modeling techniques, this type of models are known to
require of high detail of the system (An et al., 2013) and
tend to generalise badly in applied domains, and other
data-based techniques such as the ones based on reliability
do not consider the effect of differences on cycle types
during a single life observation (Lin, 1998) to the best of
our knowledge. On the top of that, the works measuring
wear in different periods of time during blade lifes have
reported wear rates that follow quite simple patterns. For
instance, Porankiewicz et al. (2015) reports edge radius
of a circular blade being increasing proportionally with
the number of logs cut; Kminiak et al. (2015) identifies
three linear relations (one per number of teethes per blade)
between the edge recession with sawn distance; and, more
complex but yet similar wear rate functions are obtained
in Lau et al. (2000), where thin-edge blades with different
coatings are compared.

In this scenario, emerging technologies such as Digital
Twins (DTs), gain interest. Digital-twins are virtual coun-
terparts of physical devices, representations based on se-
mantic models that allow simulations in different disci-
plines that can be continuously updated by a real time
synchronization with sensed data (Negri et al., 2017).
Recently, DTs have gained increasing popularity in fields
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Fig. 1. Schema of the Digital Twin proposed for blade wear
assessment.

such as Prognostics and Healh Monitoring (Tao et al.,
2019), due to their capability to produce smarter, more
efficient and more convenient manufacturing among others
(He and Bai, 2020).

Mainly, DTs are built on three basic elements: The phys-
ical asset, a digitalized version of the asset, and the data
flows that connect them both. Those different levels of
integration between the physical and digital counterpart
can be distinguished (Kritzinger et al., 2018). Additionally,
according to Tuegel et al. (2011), DT should be capable
of: Monitoring the product in real time; simulate different
operation conditions and environments of the asset; and,
based on real-time and historic data, be able to predict
the remaining life.

This paper proposes the development of a DT of a cutting
blade system. The proposed method is evaluated based
on simulated data which is similar to the one produced
on a manufacturing line. The data is used to model the
wear generated on the blade of a cutting system and the
error in the estimation is lastly studied. The solutions tries
to overcome the difficulty to adapt modelling methods
obtained on laboratory to manufacturing real conditions.
For that purpose, the development of the model is based
on data produced in the manufacturing line.

2. METHODS

This model relies on the use of historic data of the
manufacturing ERP that can be combined with SCADA
data to obtain a blade life usage (BLU) history database.
The BLU data consists of the ordered cuts per type of
tread a blade makes until the end of it’s valid life. The DT
here proposed might serve for the following purposes:

e Asses current health status (wear) of the cutting
system

e Predict the evolution of the wear status based on
production schedules

e Propose alternative production schedules to minimize
downtime due to repairing

As the model is connected to the manufacturing line, every
time new blade lifetimes are stored they can be used to
improve/readjust the wear model parameters in a constant

manner. Fig. 1 displays the data flows of the proposed
solution.

Essentially, this work follows this steps:

(1) Data from a manufacturing line is simulated

(2) Optimization algorithms are used to adjust wear
model parameters

(3) Errors are measured

2.1 Simulation

To validate the concept of DT for wear assessment, this
work considers that wear is the cause of blades being
changed at the end of the life (EOL). At the same time,
other factors affecting the life of the blade (such as other
failures not related to wear) cause to change the blades
before their EOL. These other factors are considered noise.

Wear model

Cutting blade wear modelling has been broadly studied in
sawmills. The review provided by Nasir and Cool (2020)
compiles the most important sources of variation in wood
machining into three groups:

e Blade factors
e Work-piece factors
e Feed factors

In a manufacturing scenario, blade and feed factors can
be considered ideally constant, considering the same type
of blade is being used and no alterations of the cutting
parameters are done during the production.

Regarding the work-piece factor, this work assumes, based
on the works showing empirical wear rate measurements,
that:

(1) Wear rate follows a simple model
(2) Each material /workpiece/recipe has its own wear rate
function

Even thought this model is simple, it addresses two key
concepts of wear modelling: The wear variation over time
and the different characteristics of each material. In an
attempt to mimic wear rate behaviour, various potential
wear models are considered, with different number of
degrees of freedom. These models are depicted in Fig. 2.

In addition, it is assumed that all blades are changed when
they are worn out, and that the other factors that cause
blade being change too early or late are noise. Hence,
instead of all blades reaching always the %100 of their
allowed wear, some are changed slightly before and others
slightly later (which is undesired due to decrease in the
cut quality).

Observation creation

Estimated wear models are obtained by adjusting the
parameters of the proposed wear model with the blade life
observations. Ideally, these observations would come from
a real manufacturing scenario. In this work, however, they
have been created by following the next steps:

(1) Create end of life degradation value: The final wear
value reached at the end of the blade life is assigned.
The theoretical end of life degradation value (100%)
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The following Table 1 shows an example of a blade life
created following this process.

Table 1. Example of a single blade life obser-

vation created with a constant wear model, 4

recipes with 0.002,0.004, 0.003 and 0.01 pa-
rameter values. Table values in proportions.
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Chronology Recipe Caused wear ‘Wear begin ‘Wear End Cuts
1 4 0.415 0.000 0.415 41
2 2 0.051 0.415 0.466 12
3 4 0.052 0.466 0.518 5
4 2 0.069 0.518 0.587 18
5 1 0.337 0.587 0.924 169
6 3 0.062 0.924 0.986 21
7 4 0.014 0.986 1.000 1

Fig. 2. Wear models considered for the simulation. a)
Constant model, df = 1. b) Isosceles triangle model,
df = 1. ¢) Linear model, df = 1. d) Sharp triangle
model, df = 2. e) Triangle-rectangle model, df = 3. f)
374 grade polynomial model, df = 4.
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Fig. 3. Different degradation distributions used during the
simulations. Vertical line represents meadian value.

is given some noise (that mimics the uncertainty
caused by errors/other faults or a late changes of
the blade). The distributions of the final degradations
(theoretical plus the noise) are displayed in Fig. 3.
Each distribution represents 150 blade samples that
have different levels of noise.

Assign wear fraction and order of recipes: Each of the
previous final degradation values is taken, and, ran-
domly ordering the recipes, fractions of wear caused
by each recipe are assigned. The fraction of wear is
a random number going from 0 to the final wear left
when this recipe is chosen.

Compute equivalent number of cuts: Finally, depend-
ing on the wear model that is considered for observa-
tion creation, a set of “true” parameters is assigned
and used to compute the equivalence by number of
cuts that were carried out by each recipe.

Note that the final wear proportion (right down corner
on Table 1) might not necessarily be 1, as the final
degradation value is taken from a distribution.

2.2 Optimization

Once the artificial historic datasets are created, it is at-
tempted to find which parameter values might be the
real ones by having nothing but the chronology, recipe
and amount of cut data of the datasets created in the
previous step (Chronology, Recipe and Cuts columns of
Table 1). This parameter search is carried out by means
of meta-heuristic optimization. Grey Wolf Optmizer (Mir-
jalili et al., 2014), which mimics the behaviour of grey
wolves to solve heuristic problems, is employed. This type
of meta-heuristic algorithm is based on the social hierarchy
that wolves have and assigns potential solutions a different
degree according to their role on the wolf pack (alpha,
beta, omega and delta), then, it reproduces the hunting
process of the wolves by encircling, hunting, attacking and
prey searching.

The objective function is based on the reduction of error
for the whole dataset assuming all the blades were dis-
carded at exactly the end of their life (W; = 100) and there
was no noise in the data. That is, for each solution (vector
of parameters) the error generated by estimating with the
potential model and the solution set of parameters the life
of all the blades in the whole dataset (z or the total number
of blade life observations) is computed, and averaged by
meas of root mean square error (RMSE). This value is the
fitness of that solution (see equation 1).

2 (W —Wy)2
Fitness = \/Z]_l( L 1)
z

(1)
2.3 Error computation

Throughout the different comparisons made along this
work, error has been measured in different ways, according
to the limitations of the compared models.

e Curve error
This work considers that wear rate follows certain
functions. When the true wear model is known, it is
possible to compare that model with the one obtained
from the data by comparing the surfaces of both
models. This error is considered the curve error, which
represents how well the original wear model has being



564 Lopez de Calle - Etxabe Kerman et al. / [FAC PapersOnLine 55-2 (2022) 561-566

Constant wear Isosceles triangle wear

1.00 1.00

0.75 0.75

0.50

0.50

0.25

i 0.00 3
0 2000 4000 6000 0 1000 2000 3000 4000

Linear wear Sharp triangle wear
1.00 ;

0.75
0.50

0.25

H 0.00
0 50 100 150 200 250 0
Cuts

1000 2000 3000 4000 5001

Origin | Estimated + Real

Fig. 4. Wear curves in different wear model experiments.
Horizontal line represents 100% value reached.

captured by the estimated one. The error is computed
as RMSE of the difference between the estimated
wear function and the wear function of the original
model.
e Blade database error

In the case where the true wear model is unknown the
curve error can not be computed. As in a real scenario
this true wear model is unknown, this alternative
metric is proposed to compute how well the model
explains the database. This is computed as the RMSE
between the final degradation estimated by the model
and the theoretical degradation at the end (100%).
Note that this metric is the same as the Fitness during
the optimization process.

3. RESULTS

Within the simulation wear rate models are employed to
create the blade life observations. Later, those observations
are used to optimize the parameters of potential models
that have similar shapes or potential models that are not
so similar in nature.

Regarding the possibility to identify the parameters of
the potential model when the real model that created the
observations is known by only using the cuts per recipe,
the following Fig. 4 shows the example of 4 types of models
in which it was possible to identify the original parameters
through the optimization. In general, tracing back the
original parameters by using the same model is feasible,
although there is some error that tends to be greater in
more complex models, this error is, however, unavoidable,
as the noise induced in the origin is unknown during the
optimization and, as it tends to cause blade to be changed
before really reaching 100% degradation, estimations, that
fit the data, consider final degradation is reached earlier,
as they also model the noise added to the theoretical
degradation.

The following Fig. 5 displays the differences in errors when
the models used for the wear modelling are more complex
and unknown and they are approximated by means of
simpler models. In general, the trend is to have lower
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Fig. 5. Various complex wear models estimated with sim-
pler models under different levels of noise.

errors in both database modelling and curve modelling
with lower noise values, however, the impact is greater
in the reduction of database error. This is related to the
objective function, as the fitness tries to adopt parameters
that already focus on reducing this error, the noisier the
original distribution is, the more difficult it is to identify
parameters that have lower errors within the database.
Additionally, it is interesting to mention that even thought
the curve error is always null for real wear models, its
database error can be much higher than with the estimator
models. This happens because the original wear model
is not optimized to the database and uses noise as an
input, at the same time, during the estimation the fitness
causes the estimated model to decrease that error. Hence,
estimated models do not model the original wear, they
model the database, which causes interesting effects as
the case of the triangle-rectangle wear model, that, having
more degrees of freedom, is able to adjust the database
(wear plus noise) with much higher accuracy but at the
same time has highest curve errors, meaning it is not
approaching to the real wear model. It is also remarkable
to mention that this model works worse when it is used
to estimate a database that has been created by a model
of equal shape, which might be caused by the existence of
local minimums.

Taking a closer look to the wear curve estimations for the
polynomial case in Fig. 6, it is visible that while most
of the models try to approach the original wear model,
triangle rectangle model has a completely different shape,
focusing on the minimization of the error in the database.
In addition, note that most of the estimated models tend
to converge the point in which the 100% wear is reached,
which does not coincide with the real model that does not
include the noise.

In addition to the effects of noise presented in Fig. 5,
the following Fig. 7 provides a deeper insight on how the
quality of the data could impact the estimation of the
parameters. This is mimicked by using all the different
distributions of Fig. 3 ordered from noisiest distribution
to less noisy, and then, launching the optimization with
a fixed window size of 60 observations which is passed
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constant linear poly

e [
) o 1}
= \
% 004 o . |
o s
©
a 10 15 20 25 0 5 10 15 20 25 [ 5 10 15 20 25
é tr_isos tr_sharp trirect
— ® 0.450
Qozs | \ 025
7} /A
£ | 0.425
@ 020 \ 20
& LA
015 \ \ 0.400
N
N 1
A I
10 \f P \/’w\ ’u‘ . 075
AN
0.05 N |
0.0 0.350
0 15 20 25 0 5 10 15 20 25 0 5 10 15 20 25
Window
Model constant po!y trv_sharp
linear ~ tr_isos trirect

Fig. 7. Evolution of curve error with decreasing noise in
degradation distribution.

over the whole dataset. With the results shown in Fig. 7
it is clear that the closer (more centered around) to
100% the degradation distribution is, the easier it is to
approximate the real parameter values. Which does not
occur for triangle rectangle model, which again with its
more flexible modeling rules is able to focus more on the
noise than in the underlaying wear model, hence, it does
not converge if compared to the real model.

4. CONCLUSIONS

This work envisions and tests a simple DT twin of a cutting
blade system that can be used for diagnosis and prognosis
purposes on blade wear assessment. Furthermore, the
simplicity of this DT allows to modify and optimize the
scheduled cuts so that the repairments can be addressed
minimizing production stoppage.

The interest on this work resides on the fact that holistic
blade cutting physical models are complex, and, generally,
they tend to be hardly extrapolable from laboratory val-
idation to manufacturing sites. Instead, the method here

proposed is based on the bottom up approach, where a
simple wear model is deployed and linked to the manufac-
turing site and it is tuned through optimization with on-
site data, which should provide a much better generalisa-
tion of the wear assessment. In addition, the consideration
of different usage patterns through a blades life allows
a better prognostic of life estimation and scheduling of
productions, which provides greater insight than other
widely used data-based models such as the ones based on
reliability.

Although this work is a proof of concept and should be
validated in real manufacturing scenarios, some interesting
hints have been discovered.

Most importantly, the role of noise must be remarked.
In this work noise is considered any factor which might
impact the life of a blade which is not related to material
mechanical properties and usage (number of cuts). This
might include environmental parameters such as tempera-
ture or humidity; or other related to the cutting system
that might affect the degradation of the blade. In any
case, it is clear that the fewer noise there is in the blade
observations the easier it is to model the real wear process
with higher accuracy. Furthermore, having a Digital Twin
model connected to a manufacturing line and being able
to trim blade observations that are clearly not influenced
by wear but by other phenomenons would improve the
estimation of the blade degradation.

Another interesting finding is related to the importance of
the objective function and the correct wear modelling. In
a real scenario knowing which is the real wear model is not
possible, hence, the curve error can not be measured and
it is not possible to know which estimation model is better
at capturing the true behaviour of the wear. However, and
paradoxically, it is possible to find a quite simple model
that captures the effect of the original wear model and
the noise that causes early death of the blades. Even if
this model is not physically accurate, it provides better
estimations of the blade life, which is what the final user
really wants.

In this scenario, two aspects must be remarked for a
more accurate modelling of the wear process. Firstly, that
simpler models with less degrees of freedom and based
on physical constraints should be used; and, secondly,
that more importance should be given to the observations
(blades) with the longest lifetimes, as they should be the
ones with less external effects.

In sight of these findings, the interest on testing this
approach on real scenarios is clear, due to its simplicity
and potential. However, as it is quite dependent on other
factors that might alter wear, this basic model would
probably need to be improved further by stacking ad-
ditional technologies such as current/force sensors that
would enable the real-time recognition of other non-wear
related faults. Furthermore, studying methods to weight
observations or to filter them might be of interest in order
to better understand the behaviour of wear in this kind of
manufacturing scenarios.
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