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Disclaimer 

This document contains description of the AI-PROFICIENT project work and findings.  

The authors of this document have taken any available measure in order for its content to be accurate, 
consistent and lawful. However, neither the project consortium as a whole nor the individual partners 
that implicitly or explicitly participated in the creation and publication of this document hold any 
responsibility for actions that might occur as a result of using its content.  

This publication has been produced with the assistance of the European Union. The content of this 
publication is the sole responsibility of the AI-PROFICIENT consortium and can in no way be taken to 
reflect the views of the European Union.  

The European Union is established in accordance with the Treaty on European Union (Maastricht). 
There are currently 28 Member States of the Union. It is based on the European Communities and the 
Member States cooperation in the fields of Common Foreign and Security Policy and Justice and Home 
Affairs. The five main institutions of the European Union are the European Parliament, the Council of 
Ministers, the European Commission, the Court of Justice and the Court of Auditors (http://europa.eu/). 

AI-PROFICIENT has received funding from the European Union’s Horizon 2020 research and 
innovation program under grant agreement No 957391. 
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Executive Summary 

The Deliverable 3.1 is a public document of AI-PROFICIENT project delivered in the context of WP3 
(Platform AI analytics and decision-making support), and more precisely T3.1: (Hybrid models of 
production processes and digital twins), regarding state of the art of the technology and the specification 
of two use cases related to the different pilot sites. These use cases were initially described and reported 
in deliverable D1.1 (Report on the pilot characterizations and operation scenarios) and their 
demonstration scenarios were described and reported in deliverable D1.3 (Pilot-specific demonstration 
scenarios).  

This deliverable D3.1 presents the state of the art of hybrid modelling and digital twins, covering the 
techniques from first principles modelling to fully data based surrogate models and digital twins based 
on these approaches. On that basis, designing of the approach for selected use cases and the 
specifications in each case are described. 

A second deliverable associated to task 3.1, namely deliverable 3.6 “AI-PROFICIENT hybrid models 
and digital twins (final version)”, is due in M30. This second deliverable will consist of the digital twins. 
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1 Introduction 

In AI-PROFICIENT, digital twins are linked to a range of AI services, such as predictive production 
quality assurance and process optimization. The goal of this deliverable is to first describe the links to 
AI-PROFICIENT services and then give an overview of the state of the art of the modelling methods 
that are used as a basis for deriving digital twins for these, covering the techniques from first principles 
modelling to hybrids and surrogate models.  On that basis, designing of the approach for selected use 
cases and the specifications in each case are described, keeping in mind the requirements of the 
necessary functionalities to AI-PROFICIENT to provide the S_HYB service detailed in the deliverable 
D1.5: 

Table 1: Services to be provided by the AI-PROFICIENT project (from D1.5).  

Service ID  S_HYB 

Service input and 
dependency on 

other services:    

Service input consists of process data and user experience. Process online data 
including but not limited to flow rates, compositions, temperatures, physical 
measures and pressures is required. In addition, laboratory data is needed. User 
experience of process operation, effects of process conditions and raw materials 
is also used as input. 
 
The service is linked to several other services. Inputs it may get from component 
level data acquisition and pre-processing (T2.2). Several services will utilize 
results that are based on the digital twin either directly or indirectly via another 
service. Both predictive AI analytics for production quality assurance (T3.2) and 
generative optimization (T3.4) will be able to directly utilize results of the service. 

Service output:   The developed hybrid models will provide the information on how the 
manipulated process variables and disturbances affect process outputs. Digital 
twins will be fast adaptive versions of hybrid models that provide the same 
information on-line while they continuously improve the match of the model to 
reality. 

High level service 
description:   

Hybrid models, and digital twins based on the hybrid models, will be constructed 
by combining first principles modelling of the production processes with data 
driven modelling and human feedback. Depending on the use case, different 
model combinations will be developed. For first principles modelling, state of the 
art modelling tools will be exploited (such as ChemSheet for equilibrium 
chemistry and OpenFOAM for CFD). For Ineos UC1 the chosen solution 
approach is a hybrid model that combines first principles modelling, data driven 
modelling and human feedback. For Conti UC2 the solution will be based on 
integration of a feedback system with a databased model. In case of INEOS 
UC3, the approach will be chosen after data analysis is carried out and the part 
of the process that causes rheology drift is identified. 
 
Depending on the modelling requirements, simplified linear/nonlinear/one-
dimensional forms will be considered and developed to achieve the required 
computational speed of a digital twin. For this purpose, any physical models will 
be hybridized using ML techniques that will exploit and combine the operation 
data from the process (enabled by WP2), and human feedback whenever 
feasible (WP4), with modelling results. 

The service is linked to other services, especially S_PRE (Predictive Production quality assurance 
service) and S_GEN (Generative holistic optimization) and indirectly through these services possibly to 
other services. 

This service will cover the _HYB requirements identified and detailed in the deliverable D1.4 as result 
of T1.4., shown in Table 2. 
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Table 2: Functionalities to be provided by the AI-PROFICIENT project (from D1.4).  

AI-PROFICIENT Functionalities  ID  

Monitoring  _MON  

Diagnostic and anomaly detection  _DIA  
Health state evaluation  _HEA  
Component prognostics  _PRO  
Hybrid models of production processes and digital twins  _HYB  

Predictive Production quality assurance  _PRE  

Root-cause identification  _ROO  

Early anomaly detection  _EAR  

Opportunistic maintenance decision-making  _OPP  

Generative holistic optimization  _GEN  

Future scenario based Lifelong self-learning system  _LSL  

Human feedback  _HUM  

Explainable and transparent decision making  _ETD  

The _HYB functionality will be included in two or three use cases as is shown in Table 3 that shows an 
excerpt of the synthesis table that was included in the end of D1.3 to provide an overview of the 
expected components to be part of the solution of each use case.  

Table 3: Excerpt of expected partners’ involvement in T3.1 for each use case (from D1.3).  

WP/Task  CONTI-
2  

CONTI-
3  

CONTI-5  CONTI-
7  

CONTI-
10  

INEOS-1  INEOS-2  INEOS-
3  

WP3- Platform AI analytics & decision-making support  

3.1  Hybrid 
models of 
production 
processes and 
digital twins 

TEK    
 

     VTT   VTT 

The deliverable is structured as follow. In section 2, the state of the art of hybrid models and digital twin 
is proposed. Then, in Section 3, a detailed description of the specifications and design for digital twins 
in different use cases is presented.  

2 State of the art of hybrid models and digital twins 

2.1 Introduction 

The definitions given for a digital twin somewhat vary in the literature. Here we apply the definition that 
a digital twin is a numerical description of the considered process or other entity and that there is a two-
way synchronized relation between the physical and the digital asset so that the numerical description 
is continuously calibrated using real time data. To what extent the two-way relation is applied in the 
direction from the model to the physical object varies but is typically related e.g. to control and predictive 
maintenance. The application of the digital twin can be automated or rely on a human-in-the loop 
approach.  

There are different ways to construct the digital twin and the underlying numerical model, examples of 
which are illustrated in Figure 1. Depending on the complexity and availability of the first-principles 
(based on fundamental science, e.g. physics and chemistry) description of the phenomena involved, 
the model can be based on a fully data-driven approach or combine data with the first-principles 
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description in form of a hybrid model. In the following state-of-the art of data-driven and hybrid modelling 
approaches is summarized.  

 

Figure 1. Examples of alternative ways to construct the mathematical model that is the core of the digital twin: a 
data-driven / surrogate model (left), a first-principles model with calibrated parameters (middle) and a first-

principles model augmented with a da data-driven model for all unspecified phenomena (right). 

2.2 Digital twins based on surrogate models 

Some industrial processes are so complex that producing accurate models based on Finite Element 
Methods (FEM) or other demanding modelling techniques would be too expensive and time consuming 
or technically not feasible, due to the huge amount of data needed to develop and validate the models 
(Yilmaz et al., 2021). Additionally, the need to run a twin model of a plant on real time (the essence of 
digital twins) requires the models to be computationally fast, so that different scenarios can be simulated 
in real time to provide feedback to the real asset. This requirement is difficult to achieve with FEM 
models, and hence, other modeling approaches with faster computation times are required.  

Surrogate models are interesting alternatives as their computation times are minimal in comparison to 
FEM models and, depending on their simplicity, can cope well with small samples of data. Essentially, 
surrogate models are data-based models that represent the relation among the inputs of a system and 
its outputs (Zhang et al., 1012). They are also known as metamodels or emulators, and their purpose 
is to represent the behavior of the system as closely as possible with a reduced computational cost. 
Generally, they are built to compute the output of different input scenarios with the surrogate model and 
can be applied in different kinds of problems such as: model approximation, design space exploration, 
problem formulation, reliability, sensitivity analysis, digital twin, or optimization (Fuhg et al., 2021 & 
Bárkányi et al., 2021).  

The development of a surrogate model has three main aspects to be considered:  

• The sampling 

• The modelling 

• The management strategy 
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2.2.1 The Sampling 

Sampling consists of the identification of scenarios (observations) that will provide valuable information 
to build the surrogate model. In general, it is preferred to build a rich set of scenarios instead of repeating 
similar situations so that the final model shows a greater generalization capability (Suhas Garud et al., 
2017). Usually, these scenarios are generated following a design of experiments, and, in general, 
observations are generated via real experiment or via costly simulation. Sampling can be carried out in 
two different ways. Firstly, it can be based on grid methods, geometry-based methods or other 
stochastic methods  which are known as non-adaptive sampling strategies. Secondly, in some cases 
it is possible to start from a small sample of points and use some criteria or procedure (such a partial 
surrogate model itself) to add points sequentially (adaptive sampling methods) which tend to be more 
robust and reduce the cost of the experimentations. Some important aspects that affect the sampling 
are the amount of input variables to consider, the size of the sample (i.e. the amount of observations) 
and the deterministic behavior of the experiments (their repeatability or the amount of noise in each 
iteration) (Liu et al., 2018).  

2.2.2 The modelling 

Modelling consists of creating a model that maps a set of inputs with a single or more target variables, 
generally, at the cost of having some error. The choice of model is critical, as there are many models 
that can be used with different hyperparameters, and they will impact the final accuracy of the model. 
Many different models are used for building surrogates, most commonly: gaussian processes, linear 
regression, support vector machines, decision trees and random forests, artificial neural networks, etc.  

The following work by Gary Wang & Shan (2007) shows an interesting summary of modelling (or 
metamodeling as it is somehow mentioned in surrogate modeling literature) methods: 

• Kriging methods: Accurate for nonlinear problems but difficult to obtain due to a global 
optimization process. Capable of interpolating sample points or filtering data that is noisy. 

• Polynomial models: Even though less accurate than Kriging models, they are easy to construct, 
clear on parameter sensitivity and computationally inexpensive. However, they do not 
interpolate sample point and are restricted the function type chosen. There are some variants, 
Least Interpolating Polynomials, that use polynomial basis functions but also interpolate the 
responses, for that purpose they are bases on a polynomial basis function of “minimal degree”. 

• Support vector regression methods: Tend to achieve higher accuracy than the rest of methods, 
Additionally, they can be extended with radial basis functions to increase their flexibility. 

• Artificial Neural Networks (ANN): Are known to be stable in comparison to other methods such 
as Kriging for large sample points. At the same time, they are able to provide accurate 
surrogates with reasonable computational time (Bamdad et al., 2020). In general, Kriging and 
Radial Basis Functions are more sensitive to physical or computational noise than polynomial 
and linear approaches. There are however methods to modify Kriging, RBF or ANN algorithms 
to handle noise under acceptable signal to noise ratio conditions. 
 

2.2.3 The management strategy 

The management strategy consists of the balance of the sampling technique and modelling along with 
the objective of the surrogate model (model approximation, optimization, reliability…). This aspect is 
dependent on the sampling technique employed. If the sampling technique is classical (DoE) the 
management strategy is one-step strategy, whereas if the sampling technique is adaptive, the 
management strategy is adaptive. In one-step strategy, the aim is to fit the model not only for being as 
accurate as possible, but also for being the most suitable as possible to achieve the objective of the 
surrogate. In adaptive strategy, the samples are selected in order to improve the performance of the 
model and achieve the objective of the surrogate (Ghassemi et al. 2019). 

A typical exploitation of surrogate models is the case of the surrogate-based optimization, that is, 
when the objective of the surrogate is to find an optimal solution of the problem that is modelled. Once 
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a surrogate model is built, an optimization process that creates sets of observations and determines 
which input combinations reach the most desired outcomes is launched. The fact that the model 
that is being used for optimization is surrogated one allows to run tens of thousands of fast simulations 
that compare a variety of scenarios while considering the trade-offs among variables. The optimization 
process iterates until the scenarios with the most desired conditions are reached. Depending on the 
employed management strategy two procedures can be distinguished: in one-step sampling the model 
is build based on a set of fixed data, and after that, optimization is launched; otherwise, if an adaptive 
management strategy is employed, new samples are selected based on the model’s ability to 
approximate the search space and the interesting regions for the optimization that are found, so that 
the modelling and the optimization are carried out at the same time (Fuhg et.al. 2021). 

Regarding the different methods that can be employed for the optimization, heuristic algorithms, that 
can deal with nonconvex problems, are the more common type of optimization algorithm. There are 
different families of heuristic algorithms that follow various criteria to create new populations, for 
instance, local search, tabu search, simulated annealing or some other genetic algorithms that mimic 
the behavior of certain animals, such as the swarm optimization algorithms. 

In the case of the surrogate-based digital twin, the benefits of a computationally simple and robust 
model with a fast execution are used by running the model in parallel to a real process/system and 
stablishing a bidirectional flow of the data: data from the model is used to assist on the control of the 
system, whereas the real sensory data is used to re-train and update the surrogate model. This way 
the model can better adapt to the changes on the real system and provide more accurate outputs. 

 

2.3 Digital twins based on first principles modelling and hybrid models  

In the development of digital twins based on first principles models two steps are required: 1) 
development of a first principles model that describes the target entity with sufficient accuracy and 2) 
development of the digital twin based on the model. These two steps are described in the following. 

2.3.1 Entity model and its development 

First principles modelling 

A first principles model expresses the connections between process variables by means of 
mathematical description of the phenomena occurring in the considered target entity. Different 
numerical methods are involved when the models are applied. To what degree the details of the physics 
and chemistry are described in the model depends on 

• the goal of the modelling and the details that are relevant for achieving the target 

• availability of phenomenological models and required parameters (reaction rates, transfer rates, 
material properties etc.) 

• computational capacity required and availability of such capacity at reasonable cost 

Thus all first principles models are simplifications and limited in the extent to which they describe details.  

For description of a production process consisting of several unit processes, a system modelling 
approach is required. A system model describes a production process by means of interlinked models 
for unit operations. Several commercial and some open source software are available for system 
modelling and thus it is common to apply one of the existing software instead of writing models from 
scratch. The background of a software is typically in a specific industrial branch and thus they have 
varying ready-made submodels and databases available. Some of the tools allow only steady state 
modeling while others describe process dynamics, including process control. Typically the tools allow 
core calculations of chemical engineering, including those concerned with mass balance, energy 
balance, vapor-liquid equilibrium, heat transfer, mass transfer, chemical kinetics, fractionation, and 
pressure drop. The most popular software for system modelling is ASPEN PLUS that has built-in 
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capabilities for modeling of a wide range of chemical processes including polymers, electrolytes and 
solids and large materials databases. An extensive list of commercial and open-source process 
modeling software is presented in Wikipedia at 
https://en.wikipedia.org/wiki/List_of_chemical_process_simulators.  

For unit processes such as e.g. chemical reactors and for hydrodynamics and aerodynamics, 3D 
computational fluid dynamics (CFD) modelling is used, utilizing numerical discretization such as 
e.g. FEM and Finite Volume Method FVM. However, in many simple reactors, plug flow, stirred tank or 
other simple reactor models suffice and such models are easily written and also available in system 
modelling software. For situations where mixing inside a reactor is more complicated and there are 
large variations in condition, a 3D CFD model is necessary.   

The core of CFD is discretized equations for 

• mass transfer 

• energy transfer  

• transfer of chemical compounds   

In many reactor modes, chemistry, in addition to energy balances, is the main phenomenon to be 
modelled. Hundreds of reactions and tens of chemical components may be required and chemistry may 
include e.g. catalytic or heterogeneous reactions. For multiphase systems, additionally interaction 
between the phases (transfer of heat, mass, momentum, chemical components) needs to be accounted 
for and there may be mechanical submodels required for e.g. fragmentation, attrition, bubble growth 
and split etc. Particle size distribution for the dispersed phase is often used to describe dispersions and 
the chemical and physical phenomena in those. A large number of commercial and open source 
software are available for generation of the geometry and computational mesh and for solution of the 
equation. The most widely used commercial solver is Ansys Fluent and the most popular open source 
solver is OpenFOAM. Software for grid generation and solvers are listed e.g., in https://www.cfd-
online.com/Wiki/Codes. 

There are limitations for where and how CFD modelling can be used. Such limitations are e.g. 

• lack of first principles sub models for some phenomena, e.g. chemistry, materials description 

• complexity of the phenomena which leads to excessive computation time in each computational 
cell 

• large and/or complicated geometry that leads to too large number of computational cells and 
unreasonable simulation times 

 
Lack of sub models can be often compensated by experimenting and describing the phenomena by 
means of a data-based or semi-empirical sub model. Similarly, if some phenomena are too time-
consuming to model in each cell, such phenomena can be modelled separately in the required range 
of conditions and a data-driven description can be derived on basis of the modelling data and 
implemented in the CFD code, see e.g., Niemi & Kallio (2018). Alternatively, the flow field can be 
described in a fine mesh and  a multiblock approach can be used in which the mesh cells with similar 
conditions are grouped in blocks in which the complicated chemistry and particle size distribution 
calculations are performed (Ojaniemi et. al, 2014). 
 
Fine computational mesh and long computation times are required in direct simulation where turbulent 
flow structures are resolved by the simulation. Similarly, for multiphase flows, fine flow structures such 
as particle clusters and strands and bubble boundaries need to be described. To facilitate faster 
simulation and coarse mesh resolution, turbulence models and other filtered modelling approaches 
have been developed.  
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Hybrid modelling 
 
Data-driven and first principles modelling approaches both have advantages and drawbacks. A 
compromise that tries to find a good balance between theory and data is hybrid modelling. The main 
advantages and drawbacks of the approaches are summarized in Table 4. 

Table 4: Advantages of the modelling approaches.  

Advantage Data-driven 
modeling 
 

Hybrid 
modeling 

First principles 
modeling 

Ease and speed of development High Medium-low Low 

Reliability of obtained results Low - medium Medium Medium - high 

Capability of producing unexpected new 
insight 

High Medium Low - medium 

Independency of quality of data High Medium Low 

Ease of modelling multivariate 
nonlinearities 

Low High High 

Insensitivity to validity of assumptions and 
accuracy of theories 

High High Low 

Requirement only a limited amount of data Low Medium-high High 

 
The term hybrid model covers all approaches that combine theory with process data. First principles 
models usually contain empirical data-based sub models, such as models of reaction rates, mixing 
rates, transport rates and material properties. To make them true hybrid models, these data-based 
submodels should, however, be based on data from the actual process or entity that is modelled instead 
of literature sources. The way data and theories are combined can vary in a wide range, e.g. 
 

• data-driven models with functional forms limited applying theoretical knowledge 

• data-driven models where input variables are constructed using theoretical knowledge (e.g. 
Reynolds number instead of velocity, dimension and viscosity separately) 

• data-driven models with constraints based on theoretical knowledge (e.g. we know that the 
predicted variable is always positive) 

• theory-based functional forms with data-driven parameters 

• partial model, e.g. one submodel fully based on data-driven approach and others based on 
physics 

• first principles model with data-driven correction (deviation model) 

 

2.3.2 Development of the digital twin based on the model 

First principles models and even hybrid models can be too heavy for on-line use. To reduce computation 
time, special methods such as model order reduction techniques have been developed (e.g. 
Chinestaet al., 2018). They require that either plenty of data from accurate simulations or measurement 
data are available. Other options are to use simplified first principles models or to use a heavy first-
principles model to produce a set of systemically sampled data on basis of which a data-driven model 
is derived. 

Since first principles models are of practical reasons only approximations of the reality, a data-driven 
part is always needed when a first-principles model is used in a digital twin. Compared to surrogate 
models, a smaller amount of process data is required as basis of the data-driven models since only the 
unexplained phenomena need to be modeled on basis of observations. The main ways to account for 
data are deviation modelling and parameter calibration. 
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3 Hybrid models and digital twins: Detailed description 
for each use case 

3.1 CONTI2: Restart set  

The CONTINENTAL production line produces many different types of tires. The extrusion is a 
fundamental part of the production line, and it consists of combining several compounds that are heated 
in different extruders and fused into a single tread.  

For a variety of reasons (such as needing to change the input compounds) the extrusion process needs 
to be stopped and relaunched later. This restart is a critical part of the process as many rework is 
created and the quality of the final product can be compromised if the adequate extrusion conditions 
are not reached. 

3.1.1 Solution 

The surrogate model of UC2 mimics the behavior of an extrusion process where various extruders are 
used to produce tire recipes. 

The extrusion process is complex to model as many physical phenomena occur and are influenced by 
the environment and the large number of different compounds that are used on the production. For that 
reason, building an accurate physical model of the extrusion is technically complex, which turns this UC 
more appropriate to be tackled with data-based surrogate models. 

According to the requirements defined by CONTINENTAL on D1.4 - Project requirements and 
performance assessment KPIs, the AI system would need to satisfy the following requests: 

 A) Ensure fastest setup of the restart of the machine (UR1_CONTI2): Meaning the 
proposed speed setpoints must focus on reducing the time required to reach production stability.  

 B) Ensure less rework (UR2_CONTI2): Meaning that the proposed parameters need to also 
consider the amount of rework that will be created as a consequence of the extrusion settings. 

A surrogate model is built so that the 
previous requisites are fulfilled. In 
this particular Use Case sampling is 
not of great importance, as the 
CONTINTENAL historic database is 
large, and experiments (real 
extrusions) occur very frequently. 

Taking the database containing 
signal records of the last 3 years, 
extrusions are identified, and some 
statistical features are extracted from 
the extrusions. At the same time, 
other features that represent the 
quality of each extrusion are 
extracted, i.e. the quality indicators. 

A surrogate model that maps the 
extrusion features with the extrusion 
quality indicators is built. This model 
is later used by the optimization 
system, that provides various 
populations to the surrogate model Figure 2: Schema of the surrogate modelling building process. Figure 2. Schema of the surrogate modelling building process. 
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and the extrusion surrogate returns the quality associated to each of these populations. The 
optimization process will iterate on this process until the optimal conditions that satisfy CONTINENTAL’s 
requirements are met. The process is depicted in the following Figure 2. 

Taking a closer look on the specific surrogate model used to mimic the extrusion, the inputs and outputs 
used by the model are depicted in the following Figure 3. Note that the specific signal indicators and 
processing techniques are not disclosed due to the public nature of the deliverable, however, this 
schema gives a general idea of how the inputs and outputs of the surrogate model work. 

.

 

Figure 3. Surrogate model and inputs and outputs. 

Due to the complex nature of the extruder system, it is reasonable to assume that the surrogate model 
will not be a perfect surrogate and it will incur in some error. In order to consider this fact during the 
optimization, including some uncertainty measure together with the estimated output value would be of 
great interest. In that sense, Kriging methods (a.k.a Gaussian process regression) are good modelling 
candidates as they are widely known for providing confidence estimates of the outputs (Jung  et al, 
2021). However, as the volume of available data is considerably large, and the set of input variable and 
indicator combinations is also wide, this kind of algorithms could be inefficient due to their computational 
cost and stability (Bamdad et al., 2020). If this is the case for UC2 alternative approaches such as radial 
basis support vector machines or non-parametric artificial neural networks will be used, as there are 
already precedents of works that suggest methods to quantify the uncertainty of these methods (Gal  et 
al., 2016).  

Once the surrogate model is available a data flow needs to be established. This flow of data is in charge 
of providing the outputs of the model to the final users so that they can use the suggestions to govern 
the production line. At the same time, the real data generated on the extruders can be used to update 
the parameters of the surrogate model and improve the fidelity of the model, which turns the surrogate 
model a complete digital-twin of the plant. 

3.1.2 Ethical aspects 

Considering the ethical issues related to CONTI2, identified in D1.3, Table 5 shows the ones related to 
this use case and task and the measures planned to address them. 

Table 5: Ethical issues related to utilization of digital twins in CONTI2 use case. 

D1.3 – Ethics 
code  

Description  Measures Responsible 

ETHICS 2 (3) A protocol should be created to 

deal with the situation 

when the AI makes an error 

Besides the HMI to allow users to introduce error 

feedback, this feedback will be used to retrain the DT 

so that it improves from the real data and from the 

bad predictions in particular. 

TEK/CONTI 

ETHICS 3 (4) The operator will be expected to 

adjust all extruders if AI is 

integrated, it is necessary to 

consider the extra effort required 

from the operator. 

 During the development of the digital-twin of the 

extrusion process, special emphasis will be place on 

identifying the best conditions be only manually 

setting a single extruder so that no additional 

overhead is caused to the operator.  

TEK 
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3.2 INEOS1: Reactor stability at Geel plant 

The case and proposed solution are described in D1.3 and the following is based on that description, 
with emphasis on development of the model that will be the basis of a digital twin.  

The target process in Geel plant is a continuous-flow stirred-bed reactor in gas-phase polypropylene 
polymerization. The polymerization reaction is exothermic and for that reason cooling is provided by 
feeding liquid propylene to the reactor. Cooling takes place as the liquid vaporizes. Temperature is 
measured in several locations at reactor walls. Cooling is controlled by adjusting propylene feed rates.    

The temperature control loop of the polymerization reactor is the key to allow normal run rates 
(production capacity). There are sometimes unwanted fluctuations in temperatures and in some cases 
the local temperature has even exceeded the melting temperature of the polymer. To bring the 
temperatures back to stable conditions the operator may need to reduce the production rate and hence 
production capacity is lost. Thus the temperature profile stability has a direct influence on maximum 
production rate. The goal of digital twin development is to improve understanding of what causes the 
oscillations and to develop an algorithm which helps to avoid oscillations.  

3.2.1 Solution 

Observations from the process indicate that higher temperatures occur inside the reactor than what is 
measured close to reactor walls. To describe also phenomena that are not measured, an approach that 
utilizes a first principles model was selected.  

Phenomena to be considered 

The main phenomena that affect the process and should be accounted for in first principles modelling 
are: 

• Polymerization chemistry 
o The general kinetic scheme for polymerization using a Ziegler–Natta catalyst 

comprises a series of elementary reactions including the following:  
o Polymerization chemistry 
o Activation of potential sites, the reaction through which a potential site is 

converted into a reactive vacant site.  
o Chain initiation, a new polymer chain is being built.  
o Chain propagation, the mechanism step in which the polymer chain grows.  
o Chain transfer, a type of reaction that terminates a ‘‘live’’ chain, producing 

‘‘dead’’ polymer and a vacant site (hydrogen as transfer agent).  
o Site transformation, produces an empty ‘‘live’’ site (of a different type), unlike 

the previous chain-transfer reactions that produce an initiated site, and a 
‘‘dead’’ polymer chain.  

o Site deactivation, the reaction step generally accepted as the explanation for 
the activity loss experienced during polymerization. Both occupied and vacant 
sites are assumed to deactivate  
 

• Other phase change rates 
o Rate of evaporation 
o Rate of melting of polymers 

 

• Heat transfer and energy balance 
o Heat transfer from gas to droplets in the spray 
o Heat transfer from polymer particles to droplets in the spray 
o Heat transfer from gas to polymer particles 
o Heat transfer between polymer particles 
o Heat transfer inside polymer particles 
o Wall-gas heat transfer 
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o Wall-particle heat transfer 
o Wall-liquid heat transfer 
o Heat generation in reactions 
o Consumption of thermal energy in evaporation 

 

• Fluid dynamics 
o Flow of gas phase 
o Flow of solids 
o Flow of liquid 
o Gas-liquid interaction force 
o Gas-solid interaction force 
o Liquid-solid interaction force 
o Particle-particle interaction force 
o Particle size distribution 

 

• System model of the process units outside the reactor 
o Submodels for the other process units and their connections  
o Time delays in the process and controls 

The listed phenomena can be modeled based on existing knowledge of physics, chemistry and models 
for separate process units with acceptable accuracy.   

Proposed solution  

The proposed solution is described in D1.3 and summarized here as regards to the DT solution. This 
procedure is illustrated in Figure 4. 

For that reason, the following complementary approaches that combine first principles modelling with 
data driven modelling as basis of the solution are proposed (as illustrated in Figure 4):  

1. Collection of data and assessment of the quality of the data to determine the suitability of 
the different signals for data driven modelling and as inputs for first-principles modelling. Pre-processing 
options are also considered.   

2. First principles modelling with CFD.  Computational fluid dynamic (CFD) modelling of 
different sections of the reactor is carried out with OpenFOAM software to analyze heat and mass 
transfer effects on the temperature distribution. The CFD model will describe by means of transport 
equations and phenomenological submodels the transport of gas phase and its components, transport 
of solid particles, transport of the liquid in the spays, evaporation of the liquid, polymerization reactions, 
particle size distribution of the polymer particles, and energy transport phenomena (heat transfer 
between the different phases, inside the phases and between reactor surfaces and the different 
phases). Fluid dynamic description is based on a Eulerian approach with the kinetic theory of granular 
flow and a model of frictional forces. The general kinetic scheme for polymerization using a Ziegler–
Natta catalyst comprises a series of elementary reactions. Even simplified reaction descriptions are 
considered.  

Results from analysis of the process data will be used to validate the CFD model. Adjustments to 
submodels may be also done based on comparison to measurements and on basis of observed 
correlations.  

3  A simplified first principles dynamic model for the reactor is developed by describing the 
reactor as interconnected stirred tank reactors. In each numerical reactor, reactions are modelled with 
the detailed kinetic mechanisms describing the catalytic polymerization reactions. The results from the 
CFD analysis will determine how the reactor will be split into separate numerical reactors and how 
mixing is described between these reactors through convection and diffusion. The goal is that this 
simplified dynamic model is fast enough to be run online so that it can serve as the basis for a digital 
twin.   
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4. Data driven modelling. Multivariate regression analysis is carried out to evaluate correlations 
between measured reactor temperatures or temperature stability and process inputs. Main process 
inputs in this analysis are flow rates and properties of inflows to the reactor and conditions in adjacent 
process units that can influence the reactor. Data analysis will also include assessment of periodicity of 
measured fluctuations. Even clustering analysis is considered to find effects of non-continuous 
variables such as varying catalysts and other chemicals. 

5. CFD results and results from data analysis will be used to derive closures to improve the 
submodels of the simplified reactor model. Specifically, CFD results will be used to correlate 
temperatures at the walls with internal temperatures. This should allow the model to predict temperature 
distribution inside the reactor in different process conditions. Data analysis results will be used to modify 
the reaction models. As a result, this development step will produce a hybrid model that combines 
correlations derived from 3D CFD modelling results and data analysis with the simplified reactor model.  

6. The hybrid model constitutes the basis of the digital twin. The digital twin will include either a 
deviation model or adaptive parameters. Adaptive parameters in this case are mainly reaction 
parameters that may be continuously adjusted to fit the model prediction to measured data, especially 
measured temperatures.  

  

Figure 4. Path to a digital twin of INEOS UC1. 

3.2.2 Ethical aspects 

Ethical issues related to INEOS1 were identified in D1.3. Table 6 shows the ones related to digital twins 
and the measures that are planned to address them. 

Table 6: Ethical issues related to utilization of digital twins in INEOS1 use case 

Human 
Feedback 
Compone
nt  

Description  Measures Responsib
le 

ETHICS 1 
(1.3-3) 

Limits need to be defined for the 
range inside which the prediction of 
the digital twin can be considered 
reliable.  

Operator feedback is collected during off-line testing 
phase and during operation. Based on collected 
feedback, process engineers and operators define 
together limits outside which the recommendations by 
AI should be ignored. 

INEOS, 
VTT 

ETHICS 3 
(1.3-4) 

Extra workload related to offline 
testing of the digital twin needs to 
be identified and minimized. 

Offline testing of the AI tools is carried out to gain 
experience. The DT tool will be constructed such that 
this testing will require about one full working day of 
each operator. 

VTT 
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3.3 INEOS3: Rheology drift at Cologne plant 

Whether a digital twin will be developed for INEOS UC3 depends on the results of analysis of process 
data. Data analysis is ongoing and so far sufficient results to make the decision have not been obtained. 
Thus the decision will be made later. 
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4 Conclusions 

This report summarizes the state of the art of digital twin development. This is the first deliverable of 
task 3.1. A second deliverable associated to this task, namely deliverable 3.6 “AI-PROFICIENT hybrid 
models and digital twins (final version)”, is due in M30. This second deliverable will consist of the digital 
twins. 

In this report, both surrogate and first-principles modelling are covered and application of the methods 
in the UCs of AI-PROFICIENT is presented. Depending on the availability of data and first principles 
models and theories, different modeling approaches are preferred in the derivation of a digital twin. 
Surrogate modelling requires either a large data set that covers the considered conditions or a 
possibility to carry out designed experiments. First principles modeling requires that the relevant 
phenomena can be described in sufficient details and with acceptable accuracy by mathematical 
formulations. In first principles modelling, it is common that the models need to be reformulated and 
simplified to achieve sufficient accuracy required for on-line use in the digital twin. In many cases hybrid 
modelling approaches that combine data-driven and first principles modelling can be the optimal 
method. 
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