

This project has received funding from the European Union’s Horizon 2020 research and innovation programme
under grant agreement No 957391.

Deliverable
D5.1: Communication middleware and IIoT interoperability –
design and specification

WP 5: AI-PROFICIENT system integration and deployment

T5.1: Smart component integration and IIoT interoperability

Version: 1.0

Dissemination Level: PU

Ref. Ares(2022)1459221 - 27/02/2022

 D5.1: Communication middleware and IIoT interoperability

AI-PROFICIENT • GA No 957391 2 / 34

Table of Contents

Table of Contents .. 2

List of Figures .. 3

List of Tables ... 4

Disclaimer.. 5

Executive Summary .. 8

1 Introduction .. 9

1.1 Scope .. 9
1.2 Audience ... 10
1.3 Relations to other tasks and work packages .. 10
1.4 Structure ... 10

2 AI-PROFICIENT platform middleware ... 11

2.1 Message broker .. 11
2.2 Data layer ... 12

2.2.1 Relational database ... 12
2.2.2 Time series database .. 13
2.2.3 Semantic repository ... 16
2.2.4 Visualization for development – Grafana .. 16

2.3 Orchestration of system components ... 18
2.4 Canonical data model ... 19

3 Interface to smart components and edge AI .. 23

3.1 Industrial Internet of Things (IIoT) interoperability .. 23
3.1.1 Technical interoperability ... 23
3.1.2 Syntactic interoperability ... 23
3.1.3 Semantic interoperability ... 24

3.2 Communication protocols and integration .. 27
3.2.1 Profinet, Profinet CIFX .. 27
3.2.2 MQTT .. 27
3.2.3 OPC DA (Classic) .. 28
3.2.4 EthernetIP .. 28
3.2.5 DeviceNet .. 28
3.2.6 INOS Standard Ethernet Socket ... 28
3.2.7 Profibus, Modbus (via scripting interface) ... 28
3.2.8 Database triggering via polling .. 29

4 IT infrastructure at pilot sites to host AI-PROFICIENT platform .. 29

4.1 Continental .. 29
4.1.1 Virtual Machine .. 29

4.2 INEOS Geel .. 31
4.3 INEOS Cologne .. 32

5 Conclusions ... 33

6 Acknowledgements .. 33

7 References ... 34

 D5.1: Communication middleware and IIoT interoperability

AI-PROFICIENT • GA No 957391 3 / 34

List of Figures

Figure 1 AI-PROFICIENT platform architecture (D1.5) .. 9

Figure 2: Relation of Task 5.1 with other tasks .. 10

Figure 3: AI-PROFICIENT platform middleware .. 11

Figure 4: PHPMyAdmin web interface for managing relational database 12

Figure 5: InfluxDB main dashboard ... 13

Figure 6: InfluxDB data visualization ... 14

Figure 7: InfluxDB dashboards .. 14

Figure 8: Grafana main screen .. 17

Figure 9: Grafana dashboard .. 17

Figure 10: Observation classes in SOSA .. 19

Figure 11: Actuation classes in SOSA ... 19

Figure 12: CDM classes .. 20

Figure 13: Interoperability layers [10] .. 23

Figure 14: (a) Direct protocol conversion, (b) Canonical data model 24

Figure 15: Presentation of the steps to connect to the Virtual Machine at Sarreguemines
plant .. 30

Figure 16: Description of the Remote Desktop Protocol .. 30

Figure 17: Description of the Virtual Network Computing Protocol 31

Figure 18: Remote access protocol Ineos Geel site .. 32

Figure 19: Remote access protocol Ineos Cologne site ... 33

 D5.1: Communication middleware and IIoT interoperability

AI-PROFICIENT • GA No 957391 4 / 34

List of Tables

Table 1: Fields of Observation object .. 20

Table 2: Fields of Actuation object .. 21

Table 3: Fields of Sensor object .. 21

Table 4: Fields of Actuator object .. 22

Table 5: Fields of Observable/Actuatable Properties ... 22

 D5.1: Communication middleware and IIoT interoperability

AI-PROFICIENT • GA No 957391 5 / 34

Disclaimer

This document contains description of the AI-PROFICIENT project work and findings.

The authors of this document have taken any available measure in order for its content to be accurate,
consistent and lawful. However, neither the project consortium as a whole nor the individual partners
that implicitly or explicitly participated in the creation and publication of this document hold any
responsibility for actions that might occur as a result of using its content.

This publication has been produced with the assistance of the European Union. The content of this
publication is the sole responsibility of the AI-PROFICIENT consortium and can in no way be taken to
reflect the views of the European Union.

The European Union is established in accordance with the Treaty on European Union (Maastricht).
There are currently 28 Member States of the Union. It is based on the European Communities and the
Member States cooperation in the fields of Common Foreign and Security Policy and Justice and Home
Affairs. The five main institutions of the European Union are the European Parliament, the Council of
Ministers, the European Commission, the Court of Justice and the Court of Auditors (http://europa.eu/).

AI-PROFICIENT has received funding from the European Union’s Horizon 2020 research and
innovation programme under grant agreement No 957391.

 D5.1: Communication middleware and IIoT interoperability

AI-PROFICIENT • GA No 957391 6 / 34

Title: D5.1 Communication middleware and IIoT interoperability – design and specification

Lead Beneficiary IMP

Due Date 28.02.2022.

Submission Date 28.02.2022.

Status Final

Description Design and specification of AI-PROFICIENT Communication
middleware and IIoT interoperability

Authors IMP, CON, TEK, INEOS, INOS, TF

Type Report

Review Status PC + TL accepted

Action Requested For acknowledgement by partners

VERSION ACTION OWNER DATE

0.1. Initial table of contents IMP 09.12.2021.

0.2 Addition of the Continental
part

Continental 18.01.2022

0.3 Contribution INEOS 31.01.2022.

0.4 Contribution IMP 01.02.2022.

0.5 Contribution TEK 04.02.2022.

0.6 Contribution and review TF 10.02.2022

0.7. Draft for approval IMP 11.02.2022.

0.8 Corrections by partners IMP, TF, TEK, INOS, CONTI, INEOS 17.02.2022.

 D5.1: Communication middleware and IIoT interoperability

AI-PROFICIENT • GA No 957391 7 / 34

1.0 Final version submitted UL 25.02.2022.

 D5.1: Communication middleware and IIoT interoperability

AI-PROFICIENT • GA No 957391 8 / 34

Executive Summary

The Deliverable D5.1 is a public document of AI-PROFICIENT project delivered in the context of WP5,
Task 5.1 (Smart component integration and IIoT interoperability), with regard to the design and
specification of the approach which has been taken by the involved partners.

The aim of this document is to provide the design and specification of AI-PROFICIENT platform
middleware and interface towards smart components and edge AI. First, we present the main
components of AI-PROFICIENT platform middleware. Next, we provide the description of interfaces
towards smart components and edge AI which encompasses the interoperability aspects,
communication protocols, canonical data model and semantic interoperability. Finally, we present the
approach that will be used in pilot sites to implement the aforementioned middleware, having in mind
the security constraints at the plants and the data protection.

 D5.1: Communication middleware and IIoT interoperability

AI-PROFICIENT • GA No 957391 9 / 34

1 Introduction

1.1 Scope

The aim of this document is to provide the specification of AI-PROFICIENT platform middleware which
will serve for integration of core AI-PROFICIENT services and system components. More specifically,
the related task 5.1 will employ MQTT broker to serve as a communication hub offering connectivity to
different field-level equipment, platform services, in addition to plant management systems. Data
management and components orchestration will also be presented. Next, this document will describe
the interfaces used to communicate with the plant systems, communication protocols and message
formats. Finally, in this document we provide more details on how the aforementioned design will be
implemented in three pilot sites: CONTINENTAL, INEOS Geel and INEOS Cologne. Namely, due to
strong security measures, with respect to access to monitoring data and machinery, there is a need to
deploy the instances of the platform in dedicated computers hosted in plant premises.

Plant systems

Platform middleware

Data layer

Message
broker

Data gateway

Relational database
Time-series

database Triple store

Smart components Sensors Machinery

AI services

AI service 1

AI service 2

AI service 3

Human interaction and decision support

Edge AI service

User

Data
visualization

External systems
AI4EU

Figure 1 AI-PROFICIENT platform architecture (D1.5)

The build of this document comes from the deliverable 1.5 where the AI-PROFICIENT system
architecture (see Figure 1) has been described considering the review of existing standards, former
EU project and commercial solution (D1.5 section 3) and crossing them with AI-PROFICIENT
requirements from D1.4. The high-level description of the platform has been provided in D1.5 section
4. The present document will detail the description of the platform middleware.

 D5.1: Communication middleware and IIoT interoperability

AI-PROFICIENT • GA No 957391 10 / 34

1.2 Audience

The intended audience for this document is the members of AI-PROFICIENT consortium, Project Officer
as well as the general public, since this document is public. More specifically, the consortium members
in charge of development, integration, AI service deployment and platform implementation are expected
to use the content presented here.

1.3 Relations to other tasks and work packages

As it is shown in Figure 2, Task 5.1 takes inputs from general AI-PROFICIENT Scientific and Technical
Objectives (STOs) and Task 1.5 which provides AI-PROFICIENT system architecture. This task
provides outcomes which will be used in subsequent activities within the following tasks:

 T5.2 – Semantic knowledge graph for integrated digital twins
 T5.3 – Data privacy, protection and security measures
 T5.4 – Integration with AI4EU platform, data sources and services

T1.5 – AI—PROFICIENT system
architecture

T5.1

T5.2 – Semantic knowledge graph for
integrated digital twins

AI-PROFICIENT STOs

T5.3 – Data privacy, protection and
security measures

T5.4 – Integration with AI4EU platform,
data sources and services

Figure 2: Relation of Task 5.1 with other tasks

1.4 Structure

The present document is divided into the following sections:

 Section 1 provides the introduction to the content presented in this document
 Section 2 presents the AI-PROFICIENT platform middleware
 Section 3 provides detailed description of interfaces, communication protocols, and semantic

repository
 Section 4 presents the implementation at pilot sites which considers the platform middleware

and security constraints of the pilots
 Section 5 concludes the document

 D5.1: Communication middleware and IIoT interoperability

AI-PROFICIENT • GA No 957391 11 / 34

2 AI-PROFICIENT platform middleware

Platform middleware

Data layer

Message
broker

Relational database
Time-series

database
Triple store

Data
visualization

2.1

2.2

2.2.4

2.4 CDM

Figure 3: AI-PROFICIENT platform middleware

The focus of the present document is on the platform middleware (Figure 3), which aims to integrate
the AI-PROFICIENT services and other system components. AI-PROFICIENT services will be
developed within the corresponding tasks of WP2, WP3, and WP4. The high-level description of the
services is provided in Deliverable D1.5, Section 4.4. Moreover, middleware will enable acquisition,
storage and retrieval of the collected data from the project pilot plants. As it is shown in Figure 3 above,
the AI-PROFICIENT middleware consists of the following components:

 Message broker (described in section 2.1)
 Data layer with the database software (described in section 2.2) and the Canonical Data Model

(CDM) (described in section 2.4)
 Data visualization for development (described in section 2.2.4)

In the sequel, we will provide more details for each of them.

2.1 Message broker

The aim of message broker is to enable communication between different system components by using
the publish/subscribe message exchange pattern. MQTT protocol, which is commonly used in different
Internet of Things (IoT) applications, supports custom payload type, text or binary. The
publish/subscribe communication pattern allows the sending and receiving end to be decoupled from
each other, which provides the following benefits:

 One Publisher can send a single message to many different Subscribers
 One Subscriber can receive messages from many different Publishers
 It is not required that Publishers and Subscribers be aware of each other

When compared to classical client/server architecture, the publishers and subscribers do not
communicate directly. Instead, they are using a messaging broker which manages the communication
between them. More specifically, Message broker filters messages received from different publishers
and sends them to the corresponding subscribers. In such a way, publishers and subscribers need to
know the connection details of message broker and are not required to be connected at the same time.

MQTT protocol uses a subject-based message filtering. In particular, each MQTT message has a topic
– information used by the message broker to send the message only to the clients which have been

 D5.1: Communication middleware and IIoT interoperability

AI-PROFICIENT • GA No 957391 12 / 34

previously subscribed to that same topic. The MQTT topic consists of one or more topic levels where
each of them is separated by a forward slash (e.g., plant/machine3/sensor4/pressure). An MQTT client
is not required to create the specific topic in advance before publishing and subscribing to it. Instead,
the broker automatically accepts the topic.

2.2 Data layer

Data layer represents a part of AI-PROFICIENT middleware which will provide the data storage and
access capabilities to other parts of the platform. The data collected from the pilot sites and generated
by the AI services are of different types (timestamped measurements, vectors, etc.). Depending on the
data type, the specific data storage technology will be adopted. At the moment, the relational database,
timeseries database and triple store (semantic repository) are planned to be deployed in order to fulfil
the requirements of the envisioned AI services and plant systems. Nevertheless, once the service
development reaches the final stage, the list of available databases will be reviewed, and additional
ones will be added if needed. In the sequel, we will describe each of them. More details on their
deployment and configuration will be provided in the subsequent deliverable D5.7 which will describe
the implementation of AI-PROFICIENT middleware.

2.2.1 Relational database

AI services which will be developed within AI-PROFICIENT project will take as an input the
measurements from the pilot plants, perform data analysis and provide results which will be presented
to the end users via user interface. All the results of the AI services needs to be stored in the database,
so that it is available to UI for query and visualization. It is envisioned that AI-PROFICIENT platform will
have an instance of MySQL database installed. The exact database schema will be reported once the
AI service development reaches the final stage. In order to ease the development tasks, a web interface
for database management – PHPMyAdmin (see Figure 4) will be setup.

The Canonical Data Model that defines structure of the data model to be supported by the database is
described in section 2.4.

Figure 4: PHPMyAdmin web interface for managing relational database

 D5.1: Communication middleware and IIoT interoperability

AI-PROFICIENT • GA No 957391 13 / 34

2.2.2 Time series database

It is expected that a large number of measurements will be collected from the pilot sites in AI-
PROFICIENT project. All these measurements can be modelled as a timeseries data, where each
measurement has a measured value, timestamp, and attached metadata (e.g., sensor identifier). A
timeseries database is a specific type of database which is suitable for storage of time series data. In
the market, there exist different timeseries database vendors. Based on previous positive experience,
consortium members have decided to employ InfluxDB [1].

InfluxDB is designed to handle high write and query loads, which makes it perfect for large plants where
hundreds and thousands of digital and analog signals are collected in real time. Usually, there is a need
to query such data by e.g., data analytics software. Beside legacy InfluxQL querying language, since
version 2.x, InfluxDB also supports Flux. Flux is a fourth-generation programming language designed
for data scripting, monitoring and alerting. As a functional language, queries can be structured by
separating common logic into functions and libraries that are easily shared and help speed
development. Flux can also be used in order to combine time series data with other SQL data stores
(Postgres, Microsoft SQL Server, SQLite, and SAP Hana) along with cloud-based data stores (Google
Bigtable, Amazon Athena, and Snowflake). Enriching time series data provides additional information
and context which can provide further insights into the collected data.

For managing databases and administrative tasks (e.g., creating access tokens for other users),
InfluxDB provides a web interface, as it is shown in Figure 5.

Figure 5: InfluxDB main dashboard

On the left-hand side, there exist a number of options, where one of them allows a user to visualize the
collected data, as it is shown in Figure 6.

 D5.1: Communication middleware and IIoT interoperability

AI-PROFICIENT • GA No 957391 14 / 34

Figure 6: InfluxDB data visualization

Besides, there is a possibility to create new dashboards that could contain multiple data from different
sensors (see Figure 7).

Figure 7: InfluxDB dashboards

In addition to simple querying of data, InfluxDB can perform different functions such as aggregation,
integration, sum, mean, etc. All these are performed via the same API, which can be accessed on the
specific port.

 D5.1: Communication middleware and IIoT interoperability

AI-PROFICIENT • GA No 957391 15 / 34

To be able to understand the InfluxDB schema, the following concepts need to be understood:

 Database – is a logical container for different time-series data, users, retention policies, and
continuous queries,

 Measurement – represents the data stored in the associated fields,
 Tag keys and values – used to store metadata. Tag keys are indexed so that queries that are

performed on tag keys are faster,
 Series – stands for the collection of data that share common measurement, tag set and

retention policy,
 Field keys and values – store metadata and the actual measurements. These can be of different

types: integer, float, string and boolean. Fields are not indexed, and each field value has to be
associated with a timestamp. Query on field values has to go through all points that match the
specified time range and consequently are not efficient,

 Retention policy – specifies for how long the data will be kept in the database. By default, it is
set to infinite (no data are removed).

In AI-PROFICIENT, an instance of InfluxDB will be configured for each plant. As it will be described in
Section 4, due to security constraints of each pilot site, there is a need to deploy an instance of the AI-
PROFICIENT platform within plant premises.

 D5.1: Communication middleware and IIoT interoperability

AI-PROFICIENT • GA No 957391 16 / 34

2.2.3 Semantic repository

The semantic repository has 2 purposes:

 publishing the semantic data models used in AI-PROFICIENT
 collecting and storing data according to the semantic data models

For the first, the OSLO toolchain will be deployed. The OSLO toolchain is an Open-Source publication
environment using GitHub and free trier online resources. It is the backbone of the data interoperability
program of the Flemish Government, Belgium, called Open Standards for Linked Organizations. This
toolchain produces a number of artifacts such as RDF [2] vocabularies or JSON-LD [3] context files and
SHACL [4] shapes that can be used to create, manage and validate the data produced for the second
use case. For this, the necessary publishing platform will be setup. The realized architecture of this will
be reported in in the final deliverable on the system integration and deployment (D5.8).

The second use case can be supported with RDF store technology such a Virtuoso Opensource [5].
RDF stores are graph databases, based on the RDF graph model. Over the years, the maturity of these
RDF stores has grown and today they are applied by publishers such as the Publication Office of the
European Union and Wolters Kluwer Germany. RDF stores excel when complex ad hoc queries have
to be posted on the whole knowledge base. For instance: “Provide me all operational production units
related to observations made by light sensors that are been manufactured in China for which the
accuracy level was below par”. Such complex queries arise often during data analysis to better
understand the situation. For this, SPARQL [6] as query language on top of an RDF graph is an
excellent choice.

When this use case in not pertinent, there is no need to the setup a whole infrastructure, just copying
and storing the data in another representation. Nevertheless, it is important that this infrastructure can
be bootstrapped when required. In this way, the day-to-day management of the infrastructure is
reduced, while still guaranteeing the ability to create the RDF graph stored in an RDF store and thus
queryable via a SPARQL endpoint. In order to achieve this objective, the following actions are foreseen:

 annotating the data that are made available via the Message Broker, so that a conversion of
the data can be done to RDF, for instance using JSON-LD

 an infrastructure deployment instruction (following the principle of infrastructure as code) which
allows to bootstrap an RDF store hooking itself to the Message Broker and other information
sources.

2.2.4 Visualization for development – Grafana

It is necessary to provide a user-friendly visualization tool which is capable of showing the data collected
by the platform. Such visualization is needed especially during the development of the services, since
it allows the platform developers to query and visualize different data stored in platform databases.
Grafana [7] is a well-developed software which is used via web browser which fits the requirements.
After login, the user is presented with the main screen, as it is shown in Figure 8. The user can configure
a number of dashboards, where the specific data from the database (relational or timeseries) are
visualized (see Figure 9) .

 D5.1: Communication middleware and IIoT interoperability

AI-PROFICIENT • GA No 957391 17 / 34

Figure 8: Grafana main screen

Figure 9: Grafana dashboard

 D5.1: Communication middleware and IIoT interoperability

AI-PROFICIENT • GA No 957391 18 / 34

Grafana will be installed in all the pilot sites, so that project participants-service developers can easily
visualize the data collected form the pilot plants during service development phase.

2.3 Orchestration of system components

Orchestration for information systems can be defined1 as: “Orchestration is the automated
configuration, coordination, and management of computer systems, applications, and software.
Orchestration is used to help streamlining and simplify operation management for information
technology (IT) personnel.”

For the purposes of AI-PROFICIENT we define:

Runtime orchestration of system components as the (at least partially) automated configuration,
coordination and management of data measurements/measurement points (ObservableProperty),
measurement results (Observation), sensors (Sensor) and derived results as the outputs of edge or
centralized services (Procedure), the items in parentheses being elements of the SSN-SOSA canonical
data model (see Section 2.4).

Design time orchestration of system components as the (not necessarily automated) off line
specification addition removal and/or modification of data measurements/measurement points,
measurement results, sensors and derived results.

Runtime orchestration depends on being able to:

 Identify the true availability of sensors. This information is extracted from design time
orchestration information and the status of the last executed instance of each measurement
point (measured/failed to measure). For vision measurements this information is obtained from
the INOS Station which is the runtime component of the INOS software suite2. This is a soft
real time system that is triggered from a hard real time controller in the production cell, usually
the PLC (or alternatively the robot controller if a robot is involved). For non-vision
measurements, the information is extracted from the measurement database entries, inserted
by the PLCs (CONTI) and DCSs (INEOS).

 Identify and manage the currently active services as well as start, stop and modify
settings/parameters (including complete models) of services running on the centralized servers
(virtual machines in the factory or external clouds). This can be realized using off-the-shelf
orchestration tools such as Kubernetes applied to containerized services.

 Identify the availability (running/not running status) of INOS Station instances and PLC attached
sensors. For INOS Station and complex/smart sensors we envision a simple lifebit (heartbeat)
mechanism to be sufficient. For simple sensors, the PLC or DCS status of the sensor will be
used if available.

 Identify the availability of databases (relational, time series). This can be implemented via direct
querying. Appropriate error handling / restart provisions can be made if necessary.

Design time orchestration depends on being able to:

 Identify the set of available measurement points and edge generated derived measurement
points. This is supported by being able to export the currently configured measurements in a
format that can be mapped to a subset of the CDM. Currently the names, value types and
format of the measurements that have been configured on an INOS station is exportable as a
.csv file. We will consider automated support for converting it to a CDM representation.

1 https://www.webopedia.com/definitions/orchestration/
2 Manuals of the software: Station User Manual.pdf (In line component), Maestro User Manual.pdf (Off
line configuration) and VisualizationUserManualDesktop.pdf (Visualization) are available upon demand
and for internal project use in https://univlorraine.sharepoint.com/:f:/s/AI-
PROFICIENTWP5/EgJL1Guws5VMongkdKr8FfoBzUv89FYS1I_tXw8IpNWOnQ?e=iefBXH

 D5.1: Communication middleware and IIoT interoperability

AI-PROFICIENT • GA No 957391 19 / 34

 Identify the lower-level sensors attached to an INOS Station (composite, smart sensor). This is
supported by being able to export the complete hardware setup as an XML file. We will consider
automated support for extracting the sensor names and types to a CDM representation.

 Identify any AI models running at the edge on the INOS Station platform. AI model inference in
INOS Station is implemented via Tensorflow integration. New capability must be added to
export the model into a format that is appropriate for use by AI-PROFICIENT design time model
management tools. In this case design time includes periodic updating of edge models from
centralized model training.

2.4 Canonical data model

The canonical data model (CDM) aims to cover the data exchange between software components and
the middleware in a generic manner. It is based on the Semantic Sensor Network (SSN), more
specifically the SOSA (Sensor, Observation, Sample and Actuator) ontology [8]. This lightweight
ontology makes it possible to model interactions between devices and entities performing sensing and
actuation acts, covering a wide range of use cases and possibilities.

Figure 10: Observation classes in SOSA

Figure 11: Actuation classes in SOSA

The current version of the CDM is aimed to data exchanges mainly and has left out entities from the
SOSA like Procedures and Features of Interest. These exchange events are depicted as Observations
(made by sensors) and Actuations (oriented to actuator).

 D5.1: Communication middleware and IIoT interoperability

AI-PROFICIENT • GA No 957391 20 / 34

Figure 12: CDM classes

The CDM entities just define the necessary attributes to cover the data exchanges, while the actual
implementation can differ depending on the use case: Data could be formatted in with different
structured data styles, such as JSON or XML, and different communication protocols such as MQTT or
HTTP/REST could be used to deliver them.

Observation

Observations depict values read by a sensor at a given time. Different properties can be monitored by
the same sensor.

Table 1: Fields of Observation object

Field name Field type Additional description

resultTime integer UNIX time in milliseconds (UTC). Represents
when the observation message was created.

phenomenonTime integer (Optional) UNIX time in milliseconds (UTC).
Represents the specific time of the observed
value.

observedProperty string Identifier of the monitored variable type.

result String/Boolean/numeric Value of the observed event

madeBySensor string Identifier of the sensor entity that produced the
observation

 E.g.: This message tells the current volume output for extruder EXT-001-B

{
 "resultTime": 1542899607000,
 "phenomenonTime": 1542899607000,
 "result": 75,
 "madeBySensor": "EXT-001-B",
 "observedProperty": "Extruder_volume"
}

Observation Actuation

Sensor Actuator Observable Property Actuatable Property

 D5.1: Communication middleware and IIoT interoperability

AI-PROFICIENT • GA No 957391 21 / 34

Actuation

Similar to observation, but these messages are aimed as orders to devices capable of interacting with
the real world, namely actuators.

Table 2: Fields of Actuation object

Field name Field type Additional description

resultTime integer UNIX time in milliseconds (UTC). Represents
when the actuation order was created.

actsOnProperty string Identifier of the configurable var type.

result String/Boolean/numeric Value of the configured parameter

madeByActuator string Identifier of the actuator entity the message is
oriented to

 E.g.: This message tells the actuator EXT-001-RS to select extruder recipe R_122_CV

{
 "resultTime": 1542899607000,
 "result":"R_122_CV",
 "madeByActuator": "EXT-001-RS",
 "actsOnProperty": "Extruder_recipe"
}

Sensor/Actuator

Sensors and actuators can be defined by their id and the list of properties they can observe or act on.
They are not limited to equipment and hardware devices: A web service with meteorological data could
be used to send observations of predicted weather data. Actuation orders could be oriented to specific
human operators.

Table 3: Fields of Sensor object

Field name Field type Additional description

id string Unique identifier of the sensor

observes String array Identifier of the monitored var type.

isHostedBy string Identifier of the equipment where the sensor is
installed (optional)

 D5.1: Communication middleware and IIoT interoperability

AI-PROFICIENT • GA No 957391 22 / 34

Table 4: Fields of Actuator object

Field name Field type Additional description

id: string Unique identifier of the actuator

actsOnProperty String array Identifier of the configurable var type.

isHostedBy string Identifier of the equipment where the actuator
is installed (optional)

 E.g.: Messages depicting a sensor and an actuator on Extruder EXT-001. The sensor has three
monitored signals, and the actuator has two properties than can be interacted with.

{
 "id": "EXT-001-B",
 "actsOnProperty": ["Extruder_volume","Extruder_temp","Extruder_voltage"],
 "isHostedBy": "EXT-001"
}
{
 "id": "EXT-001-RS",
 "actsOnProperty": ["Extruder_recipe","Extruder_output_on_off"],
 "isHostedBy": "EXT-001"
}

Observable/Actuatable Properties

Both observations and actuations use an identifier to refer to the properties involved. These properties
can be:

Table 5: Fields of Observable/Actuatable Properties

Field name Field type Additional description

id string Unique identifier of the property

description string Description of the property

unit string (Optional) Unit of the property. Some properties
may not have a specific measuring unit.

An example of the message is given as follows:
{
 "id": "Extruder_temp",
 "description": "Temperature of the extruder nozzle",
 "unit": "ºC"
}

 D5.1: Communication middleware and IIoT interoperability

AI-PROFICIENT • GA No 957391 23 / 34

3 Interface to smart components and edge AI

3.1 Industrial Internet of Things (IIoT) interoperability

Interoperability is the ability of a system to work with or use the parts of equipment of another system
[9]. Most of the interoperability frameworks adopt a layered interoperability model [10] which is shown
in Figure 13. As can be seen, it encompasses technical, syntactic and semantic interoperability layers.
The aim of the technical interoperability layer is to establish the communication channels between the
systems using different communication protocols. Once this is ensured, there is a need to define a
common data format for such messages, which is the aim of the syntactic interoperability layer. The
semantic interoperability layer provides the meaning of data. In the sequel, we provide more details on
each of the aforementioned interoperability layers:

Semantic interoperability
Shared meaning

Syntactic interoperability
Common data model

Technical interoperability
Common communication protocol

Figure 13: Interoperability layers [10]

3.1.1 Technical interoperability

Whereas technical interoperability is not enough per se, it is necessary to ensure it before other
interoperability layers. Technical interoperability includes the software and hardware components that
allow the communication within e.g., IoT network. In particular, this interoperability layer is aimed at the
communication protocols and required infrastructure which enables these protocols to operate.
Therefore, in order to provide technical interoperability for plant devices and machinery, it is necessary
to employ appropriate hardware solutions that enable communication with the rest of the system.

3.1.2 Syntactic interoperability

Syntactic interoperability relates to the common messaging format which forms the basis for messages
exchanged among distinct parts of system. This interoperability layer ensures that two or more devices
are able to understand the message content of the exchanged data. In practice, there exist different
methods which can be used to implement syntactic interoperability. One feasible way is to enable direct
communication between the devices by using their native protocols, or by using protocol converters as
it is shown in Figure 14a. Another possibility is to employ the protocol converters that unify different
protocols of legacy and newly installed equipment by using CDM, as it is shown in Figure 14b. The
advantage of the aforementioned approach is that each protocol has to be translated only once into
common format and backwards, that requires a linearly growing number of adapters, i.e., 2N. This is
the reason why CDM (described in section 2.4) approach has been adopted in AI-PROFICIENT project.

 D5.1: Communication middleware and IIoT interoperability

AI-PROFICIENT • GA No 957391 24 / 34

App-6 App-2

App-3App-5

App-1

App-4

App-6 App-2

App-3App-5

App-1

App-4

CDM

a b

Figure 14: (a) Direct protocol conversion, (b) Canonical data model

3.1.3 Semantic interoperability

The semantic interoperability (objective of Task 5.2) aims to ensure that the exact meaning of
information exchanged among different parts of the systems is understandable by applications that
were not developed for such a purpose. In such a way, systems is capable of combining the information
received with other information resources, and additionally, process it in a meaningful way. By using
semantic interoperability there exist several benefits:

 The quality of an interoperability specification is enhanced because a systematic process is
applied for defining it.

 Interpretation problems can be solved using the resulting specifications as a reference.
 The potential maintenance and extension tasks of the specification are performed more easily.

When aiming to achieve the semantic interoperability, instead of a textual one, a formalized specification
is desirable, since it can be used by further tools for validation purposes, and it is easier to make
modifications. Among the possible approaches, using ontologies (or Semantic Web vocabularies) is a
well adopted approach to formalize specifications. Within AI-PROFICIENT platform, ontologies will be
used to express and store the knowledge of different parts of the system, which will be later used by AI
services.

The interaction between the layers is a critical challenge to ensure that one layer will not block another.
To facilitate the communication between all layers a single representation language for the data models
used in them can be used. That allows to see the impact and relationship between them. A
representation language suited for this is the semantic web using RDF as syntax.

Using that language, the data models can be expressed and interrelated. Starting from the international
data standards for Sensors & Observations. These provide the generic language (vocabulary) to
express the information in AI-PROFICIENT. Using these, an AI-PROFICIENT generic core application
profile is created. This core application profile expresses the generic semantics and constraints that
hold for the whole project. The core application profile is then specialized to use case specific
application profiles. Any use case specific application profile can be further specialized into
implementation models. An implementation model is a data model that reflects the data in the form as
it being used in the implementation. In AI-PROFICIENT, the exploration to find the most appropriate
implementation for a use case objective could lead to parallel equivalent implementations using distinct,
yet closely related, implementation models. For instance, one could explore the impact from one
database technology over another, requiring to use different syntactical representations for the same

 D5.1: Communication middleware and IIoT interoperability

AI-PROFICIENT • GA No 957391 25 / 34

data (For instance, one technology can require that the name of a property must be starting with a
capital letter).

To illustrate the approach, we list in the following table existing ontologies/standards and application
profiles and implementation models to be created:

Type of specification Name of the specification Comments

Vocabulary ISO 19156 Observations and Measurements International standard

Vocabulary OGC/W3C Semantic Sensor Network
Ontology.

International standard

Application Profile PURL.eu Core model A generic application
profile integrating
previously mentioned
vocabularies

Application Profile https://data.ai-
proficient.eu/doc/applicationprofile/core

Core Application Profile
AI-PROFICIENT Core
Model [To be created]

Application Profile https://data.ai-
proficient.eu/doc/applicationprofile/ineos-
uc10

Ineos UC-10 Application
Profile [To be created]

Implementation Model https://data.ai-
proficient.eu/doc/implementationmodel/ineos-
uc10

Ineos UC-10
implementation model
[To be created]

The next table illustrates the notion of the term Concept in the above specifications:

Specification Concept Reference

ISO 19156 Observations and
Measurements

Observation http://def.isotc211.org/iso19156/2011/Observatio
n#OM_Observation

OGC/W3C Semantic Sensor
Network Ontology.

Observation http://www.w3.org/ns/sosa/Observation

PURL.eu Core model Observation https://purl.eu/doc/applicationprofile/AirAndWater
/Core/kandidaatstandaard/2021-10-
01/index_en.html#Observation

 D5.1: Communication middleware and IIoT interoperability

AI-PROFICIENT • GA No 957391 26 / 34

AI-PROFICIENT Core model Observation TBD

Then approach is as follows. During workshops, the partners discuss whether the term Observation in
AI-PROFICIENT Core Model is the same as specified in the international data standards. Suppose they
agree, then this term is adopted in the ontology.

In the next step, the individual properties are assessed. For instance, the OGC/W3C Semantic Sensor
Network Ontology3 states that an Observation must have a property resultTime (and at most 1 value).
The PURL.eu model has followed that. During the first discussion for creating the AI-PROFICIENT Core
Model, the partners agreed to follow this and include it in the Core Model.

According to the SSN/SOSA specification, the range of this property is xsd:dateTime. In the
implementation model proposal in section 2.4 the resultTime is expressed as UNIX time in milliseconds
(UTC). Although a technical conversion is often possible, such low-level differences may hinder the
reuse by others. This is the role of the implementation models. They lift the design decisions of the
used underlying technology to the same level as the semantic data models. Suppose one finds a
software product that implements SSN/SODA, one knows that there must be a conversion module be
deployed to turn UNIX time into xsd:dateTime.

Observe that detecting this is part of the maintenance for standards as SSN/SOSA. If the practice turns
out that this is a too restrictive decision, an issue can be filed to motivate a change based on an
implementation experience. Transparency about the decisions connecting international agreements
with implementations is the key to address the interoperability challenge.

To make this transparency also visible, the usage of annotating standards like JSON-LD is important.
Then also the actual data streams are connected with the data models.

So instead of a plain old json structure like this:

{
 "resultTime": 1542899607000,
 "phenomenonTime": 1542899607000,
 "result": 75,
 "madeBySensor": "EXT-001-B",
 "varId": "Extruder_volume"
}

Augmenting the json with a ld context
{
 "@context": {

"resultTime": “http://www.w3.org/ns/sosa/resultTime”,
},
 "resultTime": 1542899607000,
 "phenomenonTime": 1542899607000,
 "result": 75,
 "madeBySensor": "EXT-001-B",
 "varId": "Extruder_volume"
}

connects the json field with the semantics.

3 https://www.w3.org/TR/vocab-ssn/

 D5.1: Communication middleware and IIoT interoperability

AI-PROFICIENT • GA No 957391 27 / 34

Observe that this does not lead to the semantics according to the implementation model. This can be
achieved by publishing the implementation model as a semantic web document.
{
 "@context": {

"resultTime": “https://data.ai-
proficient.eu/doc/implementationmodel/uc10#resulttime”,

},
 "resultTime": 1542899607000,
 "phenomenonTime": 1542899607000,
 "result": 75,
 "madeBySensor": "EXT-001-B",
 "varId": "Extruder_volume"
}

In this way, the data is always hooked up with the semantics.

Using the above approach and supporting technologies the semantic interoperability can play its role in
improving data interoperability among systems. The ontologies, data models and interoperability
agreements made for AI-PROFICIENT will be reported in the deliverable D5.2.

3.2 Communication protocols and integration

To interface with the additional sensors, mainly vision sensors, which are being used in AI-PROFICIENT
and to support AI at the edge, we are using a number of standard industrial networks and
communication protocols. Besides, we will also provide support for some more as part of our future
exploitation strategy and are developing new capability by implementing MQTT support for smart vision
sensor systems built using the reference INOS Station platform.

The INOS Station is a soft real time system specialized for vision and robot guidance applications that
has been running in production lines, mainly in the automotive industry, over quite a number of years.
The current releases (21.x.x major release) support the protocols below and as part of AI_PROFICIENT
we have added support for the MQTT protocol.

The INOS Station is extensively configurable with a hybrid architecture combining conditionally guarded
execution (PLC like) and dataflow execution (dependency driven action execution) with the option to
execute an ECMA script (JavaScript) as a primitive action.

3.2.1 Profinet, Profinet CIFX

Profinet4 is a common industrial real time network and communications protocol.

It is commonly supported on PCs and PLCs as well as a number of smart sensors and peripherals. It
supports hard real time communications, can be used as a safety network5 and is claimed to be the
most commonly installed industrial network. It is certainly the most common standard in the EU.

In AI-PROFICIENT, Profinet will be used in the CONTI pilot use cases 5 and 7 to communicate between
the INOS vision and AI at the edge PC and the plant PLCs (programmable logic controllers). These
PLCs provide signals to INOS station for performing measurements.

3.2.2 MQTT

MQTT6 is a standard for IOT messaging. It is used extensively for IOT applications and in the last four
years or so has made significant inroads as an enabling standard for the Industrial Internet of Things

4 https://www.profibus.com/technology/profinet/overview
5 https://www.profibus.com/technology/profisafe/
6 https://mqtt.org/

 D5.1: Communication middleware and IIoT interoperability

AI-PROFICIENT • GA No 957391 28 / 34

(IIOT) and Industry 4.0. As part of AI-PROFICIENT, we have incorporated support for MQTT in the
INOS Station platform. We have integrated a library capable of supporting the MQTT 5.0 standard but
for simplicity have exported the MQTT 3.1.1 subset of functionality to the system integrator user
interface.

We consider MQTT integration critical for the exploitation of the integrated AI-PROFICIENT system. In
AI-PROFICIENT we are initially not using MQTT for information (measurement) transfer but can readily
do so and we plan to revisit as the project progresses. We will use, most probably, MQTT as an interface
to HMIs in the packing and unpacking stations of CONTI Use Case 7.

3.2.3 OPC DA (Classic)

INOS station supports the OPC DA7 protocol and can be used in future exploitation but was not needed
as part of the AI-PROFICIENT demo cases. It is a higher-level protocol running over Ethernet or
industrial real time networks such as Profinet and EthernetIP.

3.2.4 EthernetIP

INOS station supports EthernetlP8 and can be used in future exploitation but it is not needed as part of
the AI-PROFICIENT demo cases. This is the second most common industrial real time network and is
very common in North America. Development is managed by ODVA9.

3.2.5 DeviceNet

INOS station supports the DeviceNet10 protocol and can be used in future exploitation but it is not
needed as part of the AI-PROFICIENT demo cases. A relatively older protocol but with a significant
installed base. Currently managed jointly with EthernetIP by ODVA it is interoperable with it as part of
the Common Industrial Protocol standard (CIP11).

3.2.6 INOS Standard Ethernet Socket

This is an internal INOS standard built over standard sockets. While not a real time network, Ethernet
and especially Gigabit Ethernet (usually implemented as an IEEE 802.3ab over twisted pair)12 is
extensively used in industry as an inexpensive, fast, high-capacity network (e.g., for image transfer).
INOS supports both simple buffer mapping (similar to the real time protocols such as Profinet), XML
messaging and customized scriptable output generation to text (e.g., JSON, MODBUS) or binary
formats. In AI-PROFICIENT, this protocol will be used to communicate with a number of GiGE13 sensors
used in CONTI use cases and as an alternative to Profinet.

3.2.7 Profibus, Modbus (via scripting interface)

INOS station supports Profibus14 and Modbus15 via a scripting interface and can be used in future
exploitation but they are not currently needed as part of the AI-PROFICIENT demo cases.

7 https://opcfoundation.org/about/opc-technologies/opc-classic/
8 https://www.odva.org/technology-standards/key-technologies/ethernet-ip/
9 https://www.odva.org/
10 https://www.odva.org/technology-standards/key-technologies/devicenet/
11 https://www.odva.org/technology-standards/key-technologies/common-industrial-protocol-cip/
12 IEEE SA - IEEE 802.3ab-1999
13 https://www.automate.org/a3-content/vision-standards-gige-vision
14 https://www.profibus.com/
15 https://modbus.org/

 D5.1: Communication middleware and IIoT interoperability

AI-PROFICIENT • GA No 957391 29 / 34

3.2.8 Database triggering via polling

Because of factory data security policies in the industrial demo user plats (CONTI and INEOS) and the
fact that most of the already data being used are exported to existing database, database mirroring,
exporting and remapping are expected to be used as part of the AI-PROFICIENT data management
strategy at both CONTI and INEOS demo plants. INOS Station is capable of using periodic polling to
check the state or relational database as an input dependency to edge computations.

4 IT infrastructure at pilot sites to host AI-PROFICIENT
platform

4.1 Continental

4.1.1 Virtual Machine

As presented in deliverable 1.5, the AI platform will be based on a virtual machine (VM) within
Continental, due to strict security measures. Before the virtual machine can be accessed, each partner
will have to fulfil a form to apply for a Business Partner Access (BPA). Once the BPA request has been
made and approved, each partner will receive an email with their login details and passwords as well
as a link to download all the necessary software to connect to the VM.

 Firstly, there is the VPN: Cisco AnyConnect Client.
 Secondly, there is the logger to access the VM: CudaLaunch.
 Finally, there are the application(s) to take remote control: Remote Desktop, LanDESK,

UltraVNC etc.

Once all the software’s have been downloaded and the virtual machine has been set up, the partner
will first be able to establish the connection between the public network and the Continental network
using the Cisco Client. To do so, he will have to use the login and password linked to the application.

Once the VPN connection has been established, the connection between the Continental network and
the factory network must be established. To do this, the partner will need to use the CudaLaunch
application and connect to it with the username and password linked to the application.

At this stage, the partners will be able to access to the VM thanks to the remote viewer application(s).

 D5.1: Communication middleware and IIoT interoperability

AI-PROFICIENT • GA No 957391 30 / 34

Figure 15: Presentation of the steps to connect to the Virtual Machine at Sarreguemines plant

Concerning the different remote connection protocols, we can propose two:

 The Remote Desktop Protocol:

Thanks to this protocol, partners will be able to connect to the VM with totally independent sessions
(see Figure 16). Please note that this is not a duplication of screens. Nevertheless, only 2 partners will
be able to connect simultaneously with this protocol.

Figure 16: Description of the Remote Desktop Protocol

 The Virtual Network Computing Protocol:

With this protocol, unlike the RDP protocol, the number of simultaneous connections is not limited (see
Figure 17). However, the sessions are not independent. The screen is only duplicated for each
connected partner and the mouse and keyboard are shared. It should also be noted that this connection
protocol will disappear from Continental's connection methods in the future.

 D5.1: Communication middleware and IIoT interoperability

AI-PROFICIENT • GA No 957391 31 / 34

Figure 17: Description of the Virtual Network Computing Protocol

Through the proposed connection methods, it is also possible to perform file transfers from partners
directly to the virtual machine. In addition, remote access can be made via the Internet, which can be
useful for software’s using web management interfaces.

The software to be installed for the partners on the virtual machine has also been identified and is as
follows:

 Docker: via this application, all partners will be able to download the applications they need to
work on the virtual machine.

 Database software. To date, it is not yet decided what type of database will be used (relational
or timeseries). Nevertheless, if the duplication of the databases on the virtual machine keeps
the same format, the database will be in SQL format.

 PyTorch, software requested by the Université de Lorraine.

4.2 INEOS Geel

INEOS Geel site allows access to OT (Operational Technology) in a very strict manner in order to meet
high cyber security standards. Figure 18 describes the process. All external users first have to request
an account for the office network. The accompanying hardware key generator can be kept at Ineos or
sent to the user individually (depending on nr of external users). When this account is established, a
VPN (Virtual Private Network) access named InLink is requested. The next step is logging in to the
Fudo-PAM portal (Privileged Access Management server). After logging into this portal (password
needed), the user can connect to the boxes on the PIN (Process Information Network) that are assigned
to his profile by means of RDP/VNC (Remote Desktop Protocol or Virtual Network Computing). Here a
request for access to the OT network end device server (AI Proficient Virtual Machine hosted in INEOS
plant) can be triggered. The Ineos application owner can then grant access for this request via the same
portal. (max 1 day). An RDP file is then created and can be downloaded and started by the customer.
Encrypted credentials are then used to logon to the target system. If needed an in-between jump server
can also be used.

 D5.1: Communication middleware and IIoT interoperability

AI-PROFICIENT • GA No 957391 32 / 34

Figure 18: Remote access protocol Ineos Geel site

During the external access session, Ineos personnel is able to follow the session and, moreover all
sessions are recorded and can be watched afterwards if needed.

4.3 INEOS Cologne

The INEOS Cologne site allows access to OT (Operational Technology) systems similar to the other
pilot plants as described above. Figure 19 describes the specific Ineos Cologne process. All external
users have to request an account for the office network. When this account is established, Ineos
requests a VPN (Virtual Private Network) access, named inLink. The individual inLink profile allows
access via RDP (Remote Desktop Protocol) to a Windows Terminal server in the office network (Level
4). From there users sign into a Guacamole Proxy (Apache Foundation) via https, where individual
connections via SSH (Secure Shell), VNC (Virtual Network Computing) or RDP to hosts in our PIN
(Process Information Network) (Level 3.0), in this case the AI Proficient VM, are defined. For https
connections to Level 3.0 a reverse proxy is used.

 D5.1: Communication middleware and IIoT interoperability

AI-PROFICIENT • GA No 957391 33 / 34

Figure 19: Remote access protocol Ineos Cologne site

Abbreviations used in Figure 19:

WTS: Windows Terminal Server

DMZ: Demilitarized Zone

NAT: Network Address Translation

PCN: Process Control Network

Level 3 to 5 as per industry wide ‘Purdue Enterprise Reference Architecture’ [11].

5 Conclusions

In this document, the aim is to summarize the work performed within Task 5.1 in relation to design and
specification of AI-PROFICIENT communication middleware and IIoT interoperability. This document
has taken as the input the work performed previously in Task 1.5 on system architecture which was
provided in Deliverable 1.5.
First, we have revisited the system architecture provided in D1.5 and provided more details on the
envisioned system middleware and its main components: message broker, data layer, orchestration of
system components and canonical data model. Next, we described the interfaces to smart components
and edge AI. More specifically we describe the IIoT interoperability, different communication protocols
and semantic ontology. Finally, we described how middleware will be implemented at pilot sites, having
in mind the security constraints imposed by the plant’s internal security procedures.

6 Acknowledgements

This project has received funding from the European Union’s Horizon 2020 research and
innovation programme under grant agreement No 957391.

 D5.1: Communication middleware and IIoT interoperability

AI-PROFICIENT • GA No 957391 34 / 34

7 References

[1] "InfluxDB," [Online]. Available: https://www.influxdata.com/.

[2] "RDF," [Online]. Available: https://www.w3.org/TR/rdf11-concepts/.

[3] "JSON-LD," [Online]. Available: https://json-ld.org/.

[4] "SHACL," [Online]. Available: https://www.w3.org/TR/shacl/.

[5] "Virtuoso Universal Server," [Online]. Available: https://virtuoso.openlinksw.com/.

[6] "SPARQL," [Online]. Available: https://www.w3.org/TR/sparql11-query/.

[7] "Grafana," [Online]. Available: https://grafana.com/.

[8] K. Janowicz, A. Haller, S. Cox, D. Phuoc and M. Lefrançois, SOSA: A lightweight ontology for
sensors, observations, samples, and actuators, Journal of Web Semantics, 2018.06.003..

[9] "Merriam Webster - Interoperability," [Online]. Available: https://www.merriam-
webster.com/dictionary/interoperability.

[10] H. Kubicek, R. Cimander and H. J. Scholl, " Interoperability in Government," in Organizational
Interoperability in E-Government, Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-
642-22502-4_2, 2011.

[11] "Purdue model," [Online]. Available:
https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.194.6112&rep=rep1&type=pdf.

