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Disclaimer 

This document contains a description of the AI-PROFICIENT project work and findings.  

The authors of this document have taken any available measure for its content to be accurate, 
consistent and lawful. However, neither the project consortium as a whole nor the individual partners 
that implicitly or explicitly participated in the creation and publication of this document hold any 
responsibility for actions that might occur as a result of using its content.  

This publication has been produced with the assistance of the European Union. The content of this 
publication is the sole responsibility of the AI-PROFICIENT consortium and can in no way be taken to 
reflect the views of the European Union.  

The European Union is established in accordance with the Treaty on European Union (Maastricht). 
There are currently 28 Member States of the Union. It is based on the European Communities and the 
Member States cooperation in the fields of Common Foreign and Security Policy and Justice and Home 
Affairs. The five main institutions of the European Union are the European Parliament, the Council of 
Ministers, the European Commission, the Court of Justice and the Court of Auditors (http://europa.eu/). 

AI-PROFICIENT has received funding from the European Union’s Horizon 2020 research and 
innovation program under grant agreement No 957391. 
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Executive Summary 

The Deliverable D3.3 is a public document of AI-PROFICIENT project delivered in the context of 
Task 3.3: Proactive maintenance strategies at system/line level as a part of WP3: Platform AI analytics 
and decision-making support, regarding the description of the AI-PROFICIENT service that aim at 
optimizing maintenance scheduling at system level.  

D3.3 incorporates, in the introduction, a reminder of the service description in the context of AI-
PROFICIENT in relation to WP1 and the deliverables, and the problem statement of maintenance 
optimization. The second section summarizes the scientific contribution provided by the task on 
maintenance policy optimization; publications detailing these contributions are available on the AI-
PROFICIENT web site and a link is provided to download them. The third section describes the 
contribution of the task to maintenance scheduling optimization that relies on a demonstration scenario 
that incorporate some other use case outcomes in addition to Continental Combiline components. For 
the sake of confidentiality, we change the real costs in euros to anonymized cost in arbitrary CU (Cost 
Unit). 
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1 Introduction 

The goal of this deliverable is to gather the contribution that has been provided in Task 3.3 in relation 
with system level proactive maintenance strategy using AI technique in the context of AI-PROFICIENT 
project. The objective of the task is to provide, for system-level, maintenance decision-making using 
self-diagnostic, production anomaly detection (T2.3) and health assessment & prognostic (T2.4) 
services. This task will contribute to the development of opportune maintenance service (S_OPP) 
already presented in D1.5 (see Table 1). 

Table 1- Excerpt of S_OPP service description from D1.5. 

Service ID S_OPP 

Service input and 
dependency on 
other services:  

The service should be implemented at the cloud and requires at least as input: 

• Logistic support information such as maintenance team/skill, spare 
parts, etc. 

• List of maintenance actions and related costs. 

• Production planning and constraints. 

It will also require some input from other services: 

• Health state evaluation if the service is available. 

• Component prognostics if the service is available. 

• Digital Twin if the service is available. 

Service output:  

Maintenance decision consists in planning maintenance actions, for each 
component, at the right time in a dynamic way, i.e., which can be 
adapted/updated in presence of short-term information such as a new 
maintenance opportunity, new information related to the components/system 
health state, logistic support or new impacting event available. Hence, the 
purpose of the service is to provide an optimal scheduling of the maintenance 
action to be performed on a line or system. The output of the service will be 
for a list of maintenance actions and date to be performed for each 
component/group of components. The estimation of system health state 
(predictive reliability or RUL) before and after maintenance execution will be 
also provided. 

High level service 
description:  

AI-based proactive maintenance approaches are emphasized. Two main 
steps are considered: 

• Step1 – Prognostics of health state at system level: The aim is to 
develop AI-based approaches allowing to predict the health state of 
the system considering only the prognostic results at component level 
(e.g., RUL of components), but also the dependence relationships 
between components under specific context associated to the 
systems missions/functions. To support this objective, several 
dependencies in terms of kinds of interactions between components 
(e.g., structural/functional, stochastic, informational dependence) 
should be first modelled and formulated. This helps to quantify the 
impact of one component/group of components on the health state of 
other components. Secondly, AI-based approaches (e.g., recurrent 
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neural network) will be investigated to predict the health state at the 
system level from the prognostic results at component level and the 
formalized dependencies between components. The prognostics 
results of health state will be used for predictive maintenance 
decision-making at the second step. 

• Step 2 – Development of AI-based maintenance decision-making 
models1: The proposed models will be built on a set of appropriate 
decision rules and advanced AI algorithms (e.g., reinforcement 
learning) which allow to learn the most relevant decision rules to deal 
with the current condition of the system and its environment from 
observed data, the estimated health state at both components and 
system level. In that way, the proposed AI-based decision models 
should enable not only providing optimal maintenance planning 
considering both the requirements associated with the maintained 
system and its support one (e.g., spare parts, maintenance skill) but 
also to be able to update efficiently the maintenance planning in a 
dynamic context (e.g., structure changes on main or support system, 
occurrence of new maintenance opportunities). 

 

This service is intended to cover the _OPP requirement identified and detailed in the deliverable D1.4 
(see Table 2). 

Table 2 - Functionalities to be provided by the AI-PROFICIENT project (from D1.4).  

AI-PROFICIENT Functionalities  ID  

Monitoring  _MON  

Diagnostic and anomaly detection  _DIA  
Health state evaluation  _HEA  
Component prognostics  _PRO  

Hybrid models of production processes and digital twins  _HYB  

Predictive Production quality assurance  _PRE  

Root-cause identification  _ROO  

Early anomaly detection  _EAR  

Opportunistic maintenance decision-making  _OPP  

Generative holistic optimization  _GEN  

Future scenario based Lifelong self-learning system  _LSL  

Human feedback  _HUM  

Explainable and transparent decision making  _ETD  

 

In the context of AI-PROFICIENT, 8 use cases have been selected to design, develop, and demonstrate 
the services provided by the project. During the elaboration of D1.3 (Pilot-specific demonstration 
scenarios) some use cases include Task 3.3 as potential contributor for system level proactive 
maintenance strategy (see Table 3). Nevertheless, when exploring more in details the use cases data 
availability and partners intention to support Task 3.5, no use case was dealing with line/system level 
scenario. Hence, we decided to build a scenario, based on Continental pilot site and more specifically 
Combiline data, to demonstrate the developed service. This mitigation measure has been presented in 
M18 review and approved. Furthermore, state-of-the-art techniques are at TRL level 3 and require 
further improvements. As such, the advances in this task are dealing with (1) advances and contribution 
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related to reinforcement learning for maintenance of multi-component systems and (2) the proposal of 
a scenario to develop and demonstrate the service with respect to the Combiline system. 

 

Table 3 - Original excerpt of expected partners involvement in T3.3 for each use case (from D1.3).  

WP/Task CONTI-2 CONTI-3 CONTI-5 CONTI-7 CONTI-10 INEOS-1 INEOS-2 INEOS-3 

WP3- Platform AI analytics & decision-making support 

T3.3   UL UL 

TEK 

IBE 

INOS 

UL 

INOS 

IBE 

      

 

For the above-mentioned reason, the service definition provided in D1.5, presented in Table 1 has been 
updated and is presented in Table 4. 

Table 4 - Updated S_OPP service description. 

Service ID S_OPP 

Service input and 
dependency on 
other services:  

The service should be implemented at the cloud and require at least as input: 

• Logistic support information such as maintenance team/skill, spare 
parts, etc. 

• List of maintenance actions and related costs. 

• Production planning and constraints. 

Service output:  
The output of the service is the maintenance planning over the maintenance 
decision horizon. It consists of the group of components to be maintained 
together with the date of the operation. 

High level service 
description:  

The purpose of the service is to provide an optimal scheduling of the 
maintenance action to be performed on a line or system. This service aims at 
providing optimal dynamic maintenance planning considering both the 
requirements associated with the maintained system and its support one (e.g., 
maintenance crew) but also to be able to update efficiently the maintenance 
planning in a dynamic context (e.g., structure changes on main or support 
system, occurrence of new maintenance opportunities).  

Maintenance planning consists of the maintenance actions, for each 
component, and the time of operation. This planning is re-optimized in a 
dynamic way, i.e., which can be adapted/updated in presence of short-term 
information such as a new maintenance opportunity, new information related 
to the components/system health state, logistic support, or new impacting 
event available. 
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1.1 Problem statement 

Maintenance involves technical and management tasks intended to sustain a component/system in, or 
restore it to, an operating state in which it can perform designated functions. Maintenance actions can 
be categorized into two broad groups which are corrective maintenance (CM) and preventive 
maintenance (PM). CM is also known as breakdown or run-to-failure maintenance, which repairs 
malfunctioned machines and is usually associated with high cost due to unexpected production losses. 
On the contrary, PM interventions are carried out on functioning machines to avoid their failures leading 
to reduce unplanned downtime cost. PM actions can be scheduled according to either age or state 
(degradation level) of machines. The later which is also known as condition-based maintenance (CBM) 
provides some advantages in comparison with the former. Its flexibly allows making maintenance 
decisions based on actual health condition of maintained machines instead of on a fixed calendar. 
Moreover, thanks to significant advances achieved in sensor technology recently which allows 
collecting rich degradation measurement information, CBM has become a popular approach for 
maintenance decision-making and optimization. 

Maintenance optimization, given one or several objective functions, is related to 2 questions: 

• Which maintenance actions should be performed? The goal of this optimization is to find the 
best maintenance actions to be performed on each component with respect to the state of the 
components/system. 

• When should the maintenance actions take place? The goal of this optimization is to find the 
best time to perform the required maintenance actions. 

The contributions of the task deal with both questions.  

The contribution on the first question is related to scientific contribution, as the project is RIA project, 
and deals with maintenance policy optimization by considering the problem in the context of multi-
components systems with dependencies.  

The contribution related to the second question is the development of a service for maintenance 
scheduling optimization based on a proposed scenario with respect to the Combiline system for which 
only limited statical data is available. 

 

The report is structured as follows. The second section summarizes the scientific contribution provided 
by the task on maintenance policy optimization. The publications detailing these contributions are 
available on the web site of AI-PROFICIENT. The third section describes the contribution of the task on 
the development of a maintenance scheduling optimization service. In that way, the mathematical 
formulation of the problem is reported in section 3.1, the dynamic grouping optimization algorithm is 
provided in section 3.2 and, finally, the application of algorithm to a case scenario concerning the 
packaging and cutting units of the Continental Combiline with the discussions/analyses on the obtained 
results is presented in sections 3.3 and 3.4) Section 4 draws some conclusions of the report. 
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2 Maintenance policy optimization: scientific 
contributions on reinforcement learning for multi-
component systems 

The AI technique envisioned to address maintenance optimization problems at system level is the 
approaches based on the framework of multi-agent deep reinforcement learning (MADRL) which aims 
to tackle some important gaps toward industrial applications listed as bellows: 

• The number of maintenance decisions needed to be optimized for a complex industrial system 
increase exponentially in the number of components as well as number of available 
maintenance decisions for each component causing computational expense for traditional 
optimization methods. 

• Traditionally, the explicit cost structures at component level such as setup cost, spare part cost, 
maintenance labor cost, component maintenance costs are required to build the cost model at 
system level. From a practical point of view, maintenance actions are often grouped in each 
maintenance intervention due to the component economic dependence, which leads to the fact 
that such individual costs are not recorded separately, instead, only total cost is documented. 
As a result, the availability requirement of separately collecting individual maintenance costs to 
construct the cost model at system level in almost all existing maintenance decision-making 
optimization algorithms for multi-component systems is less practical. 

• The economic dependence between components allows to get economic benefit when 
components are grouped to maintain. Therefore, it is necessary to incorporate such kind of 
component dependence into maintenance models. 

 

To overcome these gaps, we proposed first an ANN-based predictor for estimating maintenance cost 
at system level which allows to get rid of demand of accessing individual costs at component level. After 
that the trained system cost predictor is integrated into MADRL framework that allows to optimize 
maintenance decisions for large-scale multi-component systems. An illustration of the proposed AI-
based maintenance approach is given in Figure 1.  
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Figure 1- Illustration of AI-based maintenance approach for multi-component systems 
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The proposed maintenance approach consists of two main stages which are offline training and online 
decision-making. The first stage aims to optimize maintenance policy based on recorded data while the 
second one involves realizing optimized maintenance actions. It can be noticed that the first stage is a 
very important part of the proposed maintenance approach. Particularly, this stage is composed of two 
main phases. The first phase aims at learning system maintenance cost model using ANNs and at 
estimating component degradation probability transition matrices. The objective of the second phase is 
to construct an environment dedicated to MADRL algorithms that employs the trained cost model and 
the estimated matrices from the first phase, and to train learning agents to optimize maintenance policy 
by letting them interact with the constructed environment.  

For more details about the proposed maintenance approach, please take a visit to the AI-PROFICIENT 
web site (following this link: https://ai-proficient.eu/resources/), the following articles are available for 
download: 

• Van-Thai Nguyen, Phuc Do, Alexandre Voisin, Benoît Iung. Reinforcement learning for 
maintenance decision-making of multi-state component systems with imperfect maintenance. 
31st European Safety and Reliability Conference, ESREL 2021, Sep 2021, Angers, France. 
⟨10.3850/978-981-18-2016-8 304-cd⟩. 

• Nguyen, V.-T., Do, P., Voisin, A., & Iung, B. (2022). Weighted-QMIX-based Optimization for 
Maintenance Decision-making of Multi-component Systems. PHM Society European 
Conference, 7(1), 360–367. https://doi.org/10.36001/phme.2022.v7i1.3319  

• Van-Thai Nguyen, Phuc Do, Alexandre Voisin, Benoit Iung, Artificial-intelligence-based 
maintenance decision-making and optimization for multi-state component systems, Reliability 
Engineering & System Safety, Volume 228, 2022, 108757, ISSN 0951-8320, 
10.1016/j.ress.2022.108757. 

 

3 Maintenance scheduling optimization: demonstration 
scenario in Continental 

In this section we develop a service, i.e., an algorithm for maintenance scheduling that considers 
constraints that are based on realistic scenario built in relation to the Continental pilot site. The 
optimization function is based on cost minimization while the constraints deal with components 
dependencies and the number of maintenance people available.  

Chapter 3 is divided in three sections: the first section 3.1 provides the problem formulation, in which 
costs considered in the model and assumptions done for the simulation are reported; section 3.2 
describes the dynamic grouping maintenance algorithm, including formulation of the economic profit 
considered in the algorithm and the genetic algorithm developed for maintenance scheduling 
optimization; the section 3.3 presents the built demonstration scenario based on the Continental pilot 
line, i.e. the Combiline, on which the algorithm was applied; finally, section 3.4 provides the results and 
discussion of the application. 

 

3.1 Problem formulation 

We consider a series-system consisting of 𝑁𝐶 components. It is assumed that each component is 

preventively maintained at least once during a short-term planning horizon starting from 𝑡𝑏𝑒𝑔𝑖𝑛 to 

𝑡𝑒𝑛𝑑. The planning horizon might be one week or one month, which depends on the company’s actual 
situations. 

The preventive cost of maintaining a component 𝑖 is given by 𝐶𝑀
𝑖 = 𝐶𝑆 + 𝐶𝑃

𝑖 + 𝐶𝑈
𝑖  in which: 

https://ai-proficient.eu/resources/
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• 𝐶𝑆 is the setup cost which is the same for all components which can be shared if several 
components are maintained together. 

•  𝐶𝑃
𝑖  is the component-specific preventive cost which cannot be shared. 

• 𝐶𝑈
𝑖  is the unavailability cost caused by the maintenance of component 𝑖 since the system is 

unavailable during its maintenance duration. Specifically, if the preventive maintenance of 

component 𝑖 is implemented during 𝑑𝑖 time units, it leads to the unavailability cost 𝐶𝑈
𝑖 = 𝑑𝑖 . 𝐶𝐷 

where 𝐶𝐷 is a positive constant representing downtime cost rate related to production loss. The 
unavailability cost can be shared if several components are grouped to maintain. 

It is supposed that at time 𝑡𝑏𝑒𝑔𝑖𝑛 the maintenance duration (𝑑𝑖) and execution time (𝑡𝑖) of each 

component are known. In addition, there are 𝑁𝑅𝑀 repairman available to implement these preventive 
activities and each repairman can only maintain one component at a time. From a practical point of 
view, the number of repairmen might be changed overtime due to economic or technical reasons. 

The objective is to find optimal groups of maintenance activities to implement as well as optimal 
execution times for each group. 

3.2 Dynamic grouping maintenance algorithm 

The proposed solution for the problem mentioned above is the dynamic grouping maintenance 
approach which consists of two steps: (1) the first step aims to evaluate the economic benefit if 
preventive maintenance activities are grouped to be implemented; (2) the objective of second step is to 
optimize maintenance groups and maintenance execution time for each group. 

3.2.1 Economic profit formulation 

Consider a group 𝐺𝑘 of 𝑁𝐺𝑘
 preventive maintenance activities that are jointly executed, the economic 

benefit of 𝐺𝑘 consists of the following parts: 

• Setup cost saving 

Implementing a group of several maintenance activities requires only one setup cost. Therefore, 
the setup cost saving of executing group 𝐺𝑘 is given by: 

𝐵𝑆
𝐺𝑘 = (|𝐺𝑘| − 1). 𝐶𝑆 = (𝑁𝐺𝑘

− 1). 𝐶𝑆 

• Unavailability cost saving: The unavailability cost due to the maintenance of a component 
causing a system shutdown can be shared if several components are maintained together by 𝑁𝑅𝑀 
repairmen. Particularly, this reduction cost is computed as follows: 

𝐵𝑈
𝐺𝑘 = ( ∑ 𝑑𝑖

𝑖∈𝐺𝑘

− 𝑑𝐺𝑘(𝑁𝑅𝑀)) . 𝐶𝐷 

where 𝑑𝐺𝑘(𝑁𝑅𝑀) is the total maintenance duration of group 𝐺𝑘 which depends on the number of 
repairmen 𝑁𝑅𝑀 as well as durations of all maintenance activities belonging to this group. It should 
be noted that if there is only one repairman available, all maintenance activities must be 

implemented sequentially. As a result, 𝑑𝐺𝑘(𝑁𝑅𝑀) = ∑ 𝑑𝑖
𝑖∈𝐺𝑘

, in other words, 𝐵𝑈(𝐺𝑘 , 𝑁𝑅𝑀) = 0. For 

𝑁𝑅𝑀 > 1, MULTIFIT algorithm is employed to find minimal values of 𝑑𝐺𝑘(𝑁𝑅𝑀).  

• Penalty cost 
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If several components are grouped to be maintained, the preventive maintenance execution time 
of some components might be either anticipated or delayed. These changes might increase 
downtime cost or waste components’ useful life. Therefore, if the preventive maintenance of 

component 𝑖 is shifted Δ𝑡 from its planned time 𝑡𝑖, we must pay something for it. In this scenario, 
we will use a penalty function given as below: 

𝑃𝑖(Δ𝑡) = 𝑃𝑖(𝑡 − 𝑡𝑖) = {
𝛼𝑖. (Δ𝑡)2 𝑖𝑓 Δ𝑡 ≤ 0

𝛽𝑖 . (Δ𝑡)2𝑖𝑓 Δ𝑡 > 0
 

It should be noted that 𝑃𝑖(0) = 0 when preventive maintenance execution time of component 𝑖 
remains unchanged. 

 

Figure 2 – Example of penalty cost function 𝑃𝑖(𝛥𝑡) with 𝛼𝑖 = 0.2, 𝛽𝑖 = 0.5 

The penalty cost of group 𝐺𝑘 is a function of time as: 

𝑃𝐺𝑘(𝑡) = ∑ 𝑃𝑖(𝑡 − 𝑡𝑖)

𝑖∈𝐺𝑘

 

The optimal execution time of group 𝐺𝑘 denoted as 𝑡𝐺𝑘 can be obtained numerically by optimizing 

𝑃𝐺𝑘(𝑡). 

Based on the above analysis, the cost benefit of implementing a group of maintenance activities 𝐺𝑘 is 
given by the sum of the setup and unavailability cost savings, minus the penalty cost: 

𝐸𝐵𝐺𝑘 = 𝐵𝑆
𝐺𝑘 + 𝐵𝑈

𝐺𝑘 − 𝑃𝐺𝑘 

 

3.2.2 Grouping optimization using Generic Algorithm (GA) 

A grouping solution or grouping structure denoted by 𝐺𝑆 is a partition of 𝑁𝑃𝑀 preventive maintenance 

activities. A partition of {1, 2, … , 𝑁𝑃𝑀} is a collection of 𝐾 mutually exclusive groups 𝐺1, 𝐺1, …, 𝐺𝐾 which 

cover all 𝑁𝑃𝑀 maintenance activities, i.e., 𝐺𝑗 ∩ 𝐺𝑙 =  ∅ ∀ 𝑗 ≠ 𝑙 and 𝐺1 ∪ 𝐺2 ∪ … ∪ 𝐺𝐾 =  {1, 2, … , 𝑁𝑃𝑀}. 
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The grouping optimization problem is to find an optimal grouping structure 𝐺𝑆∗ = {𝐺1
∗, 𝐺2

∗, … , 𝐺𝐾
∗ } with 

corresponding optimal execution maintenance times for each group 𝑡𝐺𝑆
∗ = {𝑡𝐺1

∗ , 𝑡𝐺2
∗ , … , 𝑡𝐺𝐾

∗ }. Generic 

algorithm will be used to find 𝐺𝑆∗ and 𝑡𝐺𝑆
∗ . 

 

 

Figure 3 - Generic algorithm procedure 

The general procedure to apply the GA to obtain optimal grouping solution is illustrated in Figure 3. The 
steps reported in the flowchart are described below: 

• Encoding: Each individual of the GA population, i.e., a potential solution, is represented by an 
array denoted as 𝑆 which consists of 𝑁𝑃𝑀 elements corresponding to 𝑁𝑃𝑀 preventive 

maintenance activities. It should be noted that if 𝑆(𝑖) = 𝑆(𝑗), maintenance activity 𝑖 and 𝑗 are 

executed together. Considering, for example, an array 𝑆 with 7 elements, 𝑆 = [1, 2, 3, 4, 2, 3, 1], 
that encodes the execution time of the maintenance intervention for each of the 7 elements: the 
7 preventive maintenance activities are going to be grouped in 4 groups of maintenance 
activities, which are 𝐺1 = {1, 7}, 𝐺2 = {2, 5}, 𝐺3 = {3, 6}, 𝐺4 = {4}.  

• Initial population: The population size used for GAs is usually chosen between 60 and 100. 
To generate an initial solution, each element in an array used to encode a grouping solution is 
randomly chosen between 1 and 𝑁𝑃𝑀. 

• Evaluation: Firstly, the array encoding each solution is decoded to get groups of maintenance 
activities 𝐺1, … , 𝐺𝑘. After that, the economic benefit of each group is computed. The fitness of a 
grouping solution is the sum of the economic benefit of all groups. 
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• Elitism: Two best solutions in current population are directly copied to the next generation to 
protect the best solutions from the high level of disruption. 

• Selection: Pairs of parent solutions used in the crossover step are selected by using the “linear 
ranking” selection. Particularly, the population is first sorted according to the fitness values of 
its elements in ascending order and then is categorized into several groups. Next, a parent 
solution is randomly chosen from these 𝑠 groups according to group probabilities. 

• Crossover: Each pair of parent solutions is randomly selected for crossover operator with a 
self-adaptive probability computed as bellows: 

𝑝𝑐 = {
𝑝𝑐

𝑚𝑎𝑥 −
(𝑝𝑐

𝑚𝑎𝑥 − 𝑝𝑐
𝑚𝑖𝑛)(𝑓𝑐 − 𝑓𝑎𝑣𝑔)

𝑓𝑚𝑎𝑥 − 𝑓𝑎𝑣𝑔

, 𝑖𝑓 𝑓𝑐 > 𝑓𝑚𝑎𝑥

𝑝𝑐
𝑚𝑎𝑥               , 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

in which: 

- 𝑝𝑐
𝑚𝑖𝑛 and 𝑝𝑐

𝑚𝑎𝑥  are respectively the lower and upper bound of crossover probability. 

- 𝑓𝑎𝑣𝑔 and 𝑓𝑚𝑎𝑥 are respectively the average and the maximal fitness of all solution in the 

population. 
- 𝑓𝑐 is the higher fitness of the two parent solutions’ fitness. 

The two-point crossover mechanism will be used to produce two children from two selected 
parents. Specifically, two points are first randomly chosen to divide each parent solution into 
three parts. The elements between these two points are then exchanged to create new child 
solutions. 

• Mutation: The objective of mutation step is to prevent GA optimizer falling into local optimal 
solution. Each child solution produced by crossover has a mutation probability (mutation rate) 
computed by: 

𝑝𝑚 = {
𝑝𝑚

𝑚𝑎𝑥 −
(𝑝𝑚

𝑚𝑎𝑥 − 𝑝𝑚
𝑚𝑖𝑛)(𝑓𝑚𝑎𝑥 − 𝑓𝑚)

𝑓𝑚𝑎𝑥 − 𝑓𝑎𝑣𝑔

, 𝑖𝑓 𝑓𝑚 > 𝑓𝑎𝑣𝑔

𝑝𝑚
𝑚𝑎𝑥               , 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

in which: 

• 𝑝𝑚
𝑚𝑖𝑛 and 𝑝𝑚

𝑚𝑎𝑥  are respectively the lower and upper bound of mutation probability. 

• 𝑓𝑎𝑣𝑔 and 𝑓𝑚𝑎𝑥 are respectively the average and the maximal fitness of all solution in the 

population. 

• 𝑓𝑚 is the fitness of the parent solution. 

If the mutation occurs in a child solution, a random maintenance activity in a group will be 
randomly moved to another group. 

3.3 Demonstration scenario in Continental 

In this demonstration scenario, we consider the grouping maintenance problem for the cutting unit 
(CONTI-5) and the packaging system (CONTI-7) which are two of the most important units of the 
Combiline.  

Specifically, the core of the cutting system is the circular blade which performs a considerable amount 
of cuts each day. These repetitive cuts make the blade to be worn out and it needs to be replaced 
frequently to be in optimal condition to perform accurate cuts that will not compromise the final quality 
of the tires. Moreover, if the blade is worn, its’ capability to produce good cuts is compromised leading 
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to quality issues downstream of the production line. Therefore, when this kind of problem is detected, 
the treads are segregated without going to the next step in the process. 

The tread after being cut needs to be packed automatically on trolleys in the packing unit to go to tire 
building process. The packing unit is made of multiple belts and the wear of some of them can create 
misalignment on the trolley. As the treads are managed via robots in the next steps, the alignment 
needs to be as perfect as possible. However, due to the wear condition of the belts it can happen that 
the treads are not correctly placed onto the leaf. Hence, also in this case, the problem is detected, and 
the treads are segregated. 

Based on the data provided by the company, we decided to fix the length of the planning horizon equal 
to be one month (30 days). The hyper-parameters of the components of the two subsystems used in 
this demonstration are reported in Table 5. The alpha and beta parameters are related to the penalty 
function previously presented in section 3.2.1. It should be noted that parameters in green color are 
computed from data provided by the company, whereas parameters in red color are hypothesized due 
to the lack of data. We also hypothesize that the setup cost 𝐶𝑆 is 500 CU, and the downtime cost rate 

𝐶𝐷 is 100 CU per hour. 

Table 5 - Data of the considered components of the Combiline. Green data are real data from Combiline and red 
data are hypothesized. 

ID Component 
Alpha 

(𝛼𝑖) 

Beta 

(𝛽𝑖) 

Replacement 
time(s) 

(𝑡𝑖) 
(hours) 

Maintenance 
duration 

 (𝑑𝑖) 

 [hours] 

Replacement 
cost 

 (𝐶𝑃
𝑖 ) 

[CU] 

0 Circular blade 5 20 8, 512 2 423.81 

1 Standard roller 5 16 10 1.5 228.33 

2 Adjustable shock absorber 5 8 15 0.5 88.91 

3 Flat belt 5 6 34, 538 0.25 37.46 

4 Round vacuum cup 5 7.2 120 0.4 20.7 

5 Tige-Fourche 1 5 6 125, 509 0.25 10.71 

6 Tige-Fourche 2 5 6 340, 684 0.25 2.6 

7 Suction cup 5 6 40, 376, 712 0.25 21.08 

8 Cylinder clevis 1 5 8 30, 366, 702 0.5 2.6 

9 Cylinder clevis 2 5 6 50, 386 0.25 12.24 

10 Cylinder clevis 3 5 6 60, 396 0.25 2.6 

 

There are 21 preventive maintenance activities within the considered planning horizon that are listed in 
Table 6. Particularly, each preventive maintenance activity is represented by a tuple of two elements 
that are respectively the execution time and the ID of the component on which maintenance is carried 
out. For example, maintenance activity encoded by (10, 1) is carried out at time 10 on component 1 
(standard roller). 
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Table 6 – Example of preventive maintenance activities scheduled in the time horizon. 

ID Maintenance activity  ID Maintenance activity  ID Maintenance activity 

1 (8, 0)  8 (125, 5)  15 (30, 8) 

2 (512, 0)  9 (509, 5)  16 (366, 8) 

3 (10, 1)  10 (340, 6)  17 (702, 8) 

4 (15, 2)  11 (684, 6)  18 (50, 9) 

5 (34, 3)  12 (40, 7)  19 (386,9) 

6 (538,3)  13 (376, 7)  20 (60,10) 

7 (120, 4)  14 (712, 7)  21 (396, 10) 

 
 

3.4 Result and discussion 

In the following we present, first, the result of the service with the scenario described in the above 
section. We then study the influence of some specific parameters that can vary according to the use 
case considered. 

3.4.1 Result and discussion from the standard scenario 

We run the developed GA algorithm to find the optimal grouping solutions for three values of the number 
of available repairmen. It should be noted that GA does not guarantee the finding of global optimal 
solution. Therefore, we need to run the algorithm several times to obtain the best results which are 
given in the Table 7, Table 8 and Table 9. 
 

Table 7 – Scenario with one repairman 

Number of 
repairmen 

Saving 
cost [%] 

Unavailability 
period 
[hours] 

Optimal 
group 

Optimal execution 
time [hours] 

Maintenance 
duration 
[hours] 

1 43.02% 11.15 

(1, 3, 4) 9.5 4.0 

(5, 12, 15) 33.889 1.0 

(18, 20) 54.545 0.5 

(7, 8) 122.049 0.65 

(10, 16) 351.818 0.75 

(13, 19, 21) 385.375 0.75 

(2, 6, 9) 515.613 2.5 

(11, 14, 17) 698.375 1.0 

 
 

Table 8 – Scenario with 2 repairmen 

Number of 
repairmen 

Saving 
cost [%] 

Unavailability 
period 
[hours] 

Optimal 
groups 

Optimal execution 
time [hours] 

Maintenance 
duration 
[hours] 

2 46.49% 6.65 

(1, 3, 4) 9.5 2.0 

(5, 12, 15) 33.889 0.5 

(18, 20) 54.545 0.25 

(7, 8) 122.049 0.4 

(10, 16) 351.818 0.5 

(13, 19, 21) 385.375 0.5 

(2, 6, 9) 515.613 2.0 

(11, 14, 17) 698.375 0.5 
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Table 9 – Scenario with 3 repairmen 

Number of 
repairmen 

Saving 
cost [%] 

Unavailability 
period 
[hours] 

Optimal 
groups 

Optimal execution 
time [hours] 

Maintenance 
duration 
[hours] 

3 48.49% 6.15 

(1, 3, 4) 9.5 2.0 

(5, 12, 15, 
18, 20) 

41.133 0.5 

(7, 8) 122.049 0.4 

(10, 16) 351.818 0.5 

(13, 19, 21) 385.375 0.25 

(2, 6, 9) 515.613 2.0 

(11, 14, 17) 698.375 0.5 

 

As can be seen from the results reported in Table 7, Table 8 and Table 9, the maintenance grouping 
algorithm allows saving 46.49% of cost  even if there is only one repairmen available. In this case the 
cost reduction is mainly due to the saving of set-up costs when several maintenance activities are 
carried out together.  

In the case where there is more than one repairman available, cost can be saved more by saving setup 
cost as well as by reducing the system unavailability. Particularly, the percentage of money economized 
if there are two and three repairmen available is 46.49% and 48.49% respectively. It can be noticed that 
the system’s unavailability is reduced significantly by (11.15 - 6.65) / 11.15 = 40.36 % and (11.15 - 6.15) 
/ 11.15 = 44.84 % when there are 2 and 3 repairmen available respectively. 

It can be also noticed that the optimal maintenance groups in the case where the number of repairmen 
is fixed to 1 and 2 are the same, however, the duration needed to carry out the maintenance intervention 
on each group are different. It is worth noting that more maintenance activities can be grouped to 
implement when there are more repairmen available. Particularly, in the case where there are 1 and 2 
repairmen available, maintenance activities numbered 5, 12, 15, 18, 20 are put into two different groups 
to carry out, i.e., group (5, 12, 15) and (18, 20), while they are in the same group when the number of 
repairmen is 3. 

3.4.2 Sensitivity analysis 

This section aims to get some insights on the impact of several hyper-parameters on the characteristics 
of optimal grouping solutions. Particularly, the number of repairmen and the setup cost are considered 
as the factors used for the analysis in the following subsections.  

3.4.2.1 Number of repairmen 

We first study the impact of the number of repairmen on the saving cost and the system unavailability 
by running the grouping algorithm for different values of 𝑁𝑅𝑀 range from 1 to 6 (the other parameters 
are the same as used in the above section). The result of this study is illustrated in Figure 4 and Figure 
5. 

It can be noticed that the evolution of the saving cost and the system unavailability is opposite because 
the increase of saving cost in fact requires the decrease of system unavailability. Moreover, it is 
interesting to see that the optimal policy is unchanged when there are enough repairmen available to 
carry out maintenance activities (𝑁𝑅𝑀  ≥ 3). This can be explained by the assumption that an increase 
in the number of repairmen do not lead to an extra cost as well as by the optimization mechanism of 
MULTIFIT algorithm which assumes that a maintenance activity can be carried out by only one 
repairman. For example, considering the case where, there is one maintenance intervention needed to 
implement, while there are two repairmen available. The intervention can be done by only one of the 
two repairmen; thus, the maintenance duration is not reduced. 
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Figure 4 – Impact of number of repairmen on saving cost. 

 

Figure 5 – Impact of number of repairmen on system unavailability. 

. 

3.4.2.2 Setup cost 

In this section, we investigate how the setup cost affects the way maintenance interventions are 
grouped to implement by running the grouping algorithm for different values of 𝐶𝑆. The result of this 
simulation is illustrated in Figure 6.  

It can be noticed that maintenance activities tend to be carried out in groups when setup cost is high, 
whereas there are more maintenance activities which are implemented separately when setup cost is 
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low. This can be explained by the fact that the higher the setup cost is, the higher economic benefit we 
can get when maintenance activities are implemented together.  

 

Figure 6 – Impact of setup cost on number of maintenance groups 

 

4 Conclusions  

The Deliverable reports the work developed during Task 3.3 dealing with maintenance optimization at 
the line level (considering several components and subsystems).  

The two main outcomes of this task detailed in the documents are: 

• A scientific contribution to maintenance decision-making optimization of multi-component 
systems considering the impact of component dependencies based on MADRL framework; 

• A service for dynamic opportunistic maintenance scheduling, namely an algorithm for the 
scheduling of maintenance activities that considers constraints based on a realistic scenario 
built in relation to the Continental pilot site. The algorithm was, therefore, applied on a 
demonstration scenario based on Continental pilot, i.e., the Combiline, and different analysis 
were performed varying the parameters (as number of repairmen, setup cost) in input to the 
model. The application of the algorithm shows that it is possible to reduce unavailability periods 
and save costs proper scheduling of maintenance activities on critical components of the line. 
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