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Disclaimer 

This document contains a description of the AI-PROFICIENT project work and findings.  

The authors of this document have taken any available measure for its content to be accurate, 
consistent and lawful. However, neither the project consortium as a whole nor the individual partners 
that implicitly or explicitly participated in the creation and publication of this document hold any 
responsibility for actions that might occur as a result of using its content.  

This publication has been produced with the assistance of the European Union. The content of this 
publication is the sole responsibility of the AI-PROFICIENT consortium and can in no way be taken to 
reflect the views of the European Union.  

The European Union is established in accordance with the Treaty on European Union (Maastricht). 
There are currently 28 Member States of the Union. It is based on the European Communities and the 
Member States cooperation in the fields of Common Foreign and Security Policy and Justice and Home 
Affairs. The five main institutions of the European Union are the European Parliament, the Council of 
Ministers, the European Commission, the Court of Justice and the Court of Auditors (http://europa.eu/). 

AI-PROFICIENT has received funding from the European Union’s Horizon 2020 research and 
innovation program under grant agreement No 957391. 
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Executive Summary 

Deliverable D2.4, Local AI for proactive maintenance support, presents the advances made in the 
context of Work Package 2 (WP2) Smart components and local AI at system edge that are related to 
the development of edge systems used for the prognostics of the assets health in which they are 
embedded or run. 

Prognostic services are one of the cornerstones of Industry 4.0. These services can be used by higher 
level systems (such as the ones developed in WP3 of AI-PROFICIENT project) to optimize asset 
operation in coordination with other assets to optimize the maintenance scheduling for instance; or, by 
other edge systems (such as the ones developed in T2.5) that could modify their controls adapting them 
to the current condition of the controlled asset in order to optimize their usage timespan. 

This deliverable aims to disseminate the prognostics models and algorithms that have been developed 
within Task 2.4, Self-prognostics and component operating condition estimation. As such, some results 
on public datasets will be presented as well as some results on APROFICIENT use cases. 
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1 Introduction 

The goal of this deliverable is to gather the contribution that has been provided in task 2.4 in relation 
with Self-prognostics and component operating condition estimation using AI technique in the context 
of AI-PROFICIENT project. The objective of the task is to provide prognostics capabilities at component 
level and derive the corresponding service. Hence, the task contributes to the development of S_PRO 
service described in D1.5 and recap in Table 1.  

Table 1: Excerpt of S_PRO service description from D1.5  

Service ID   S_PRO   

High level service 

description:    
Degradation based prognostics is based on a degradation model of the 

degradation modes of the equipment. The degradation models are mainly built 

based on historical data and may consider age, usage and measurement of the 

equipment. Such a model is then updated depending on available current 

measurements. The degradation model makes projections over the future in 

order to predict the remaining useful life of the item in consideration. Such a 

model includes AI-based techniques but also more conventional approaches 

such as stochastic processes, trend, and time series models. They may deliver 

not only the RUL but also the degradation trajectory.   

RUL prediction prognostics provides only the RUL of the component. Such a 

model has already been investigated in the project on the public C-MAPSS 

dataset. The proposed deep neural networks used for this purpose exploit 

automatic representation learning to discover weak and complex correlations 

between sensors that may not be easily captured by domain experts and thus 

potentially increase portability of the prediction model to other configurations and 

environments.   

This service aims at covering the _PRO requirements identified and detailed in the deliverable D1.4 
(see Table 2). 

Table 2: Functionalities to be provided by the AI-PROFICIENT project (from D1.4). 

AI-PROFICIENT Functionalities  ID  

Monitoring  _MON  

Diagnostic and anomaly detection  _DIA  
Health state evaluation  _HEA  
Component prognostics  _PRO  

Hybrid models of production processes and digital twins  _HYB  

Predictive Production quality assurance  _PRE  

Root-cause identification  _ROO  

Early anomaly detection  _EAR  

Opportunistic maintenance decision-making  _OPP  

Generative holistic optimization  _GEN  

Future scenario based Lifelong self-learning system  _LSL  

Human feedback  _HUM  

Explainable and transparent decision making  _ETD  
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In the context of AI-PROFICIENT, 4 use cases have been selected, in WP1, to design, develop, and 
demonstrate the services provided by the project. During the elaboration of D1.3 (Pilot-specific 
demonstration scenarios) some use cases include task 2.4 as potential contributor for component 
prognostics (see Table 3).  

Table 3: Original excerpt of expected partners involvement in T2.3 for each use case (from D1.3). 

WP/Task CONTI-2 CONTI-3 CONTI-5 CONTI-7 CONTI-10  INEOS-1  INEOS-2 INEOS-3 

WP2– Smart components and local AI at system edge   

T2.4 TEK   UL   TEK 

UL 
            UL   

Nevertheless, when exploring more in detail the use cases data availability and partners’ intention to 
support task 2.4, some use cases have been discarded. After data analysis, no prognostics will be 
performed in CONTI-2. For INEOS-3 use case, INEOS decided to stop the use case after data analysis. 
Table 4 reflects the actual situation during the writing of this deliverable. 

Table 4: Updated partner and UC contribution matrix. 

WP/Task CONTI-2 CONTI-3 CONTI-5 CONTI-7 CONTI-10  INEOS-1  INEOS-2 INEOS-3 

WP2– Smart components and local AI at system edge   

T2.4 
 

UL   TEK             
 

The deliverable is structured as follows. The second section presents the main approaches for 
prognostics including AI techniques. The third section provides the scientific contribution provided by 
the task on prognostics. The fourth section describes the prognostics services developed on the use 
case. 

2 Prognostics: Definition and AI based improvements 

Prognostics involve predicting the future health state of a system to anticipate potential failures before 
they occur (Jardine at al., 2006). This prediction can take the form of a forecast of the remaining useful 
lifetime or an estimation of the system's health for future operations. Prognostics rely on the features 
generated by the condition assessment step and the output of the diagnostics step. 

As noted in the literature (Peng et al., 2010), prognostics can be broadly categorized into three main 
types: physics-based models, data-driven models, and hybrid models. Physics-based models make 
predictions based on physical laws and principles governing the system. Data-driven models rely on 
historical data to learn the system's behavior and predict its remaining useful life (RUL). Hybrid models 
combine both approaches. AI-PROFICIENT aims at leveraging AI techniques and as such the proposed 
approach relies on data driven techniques. 

Machine learning has already been extensively used in system health prognostics, with promising 
results. In (Leukel et al., 2021) a systematic review has been conducted on prognostics of industrial 
systems using machine learning, which involves using data-driven methods. One example of an 
advanced learning model that has been applied to various applications is the long-short term memory 
neural network (LTSM). This type of model has been considered in AI-PROFICIENT and will be 
developed for both as scientific advance, since in (Chaoub et al., 2021) such a model has been used 
to predict the remaining useful life (RUL) of turbofan engines and for use case developments. 
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3 Scientific contribution of T2.4 

We report here 2 scientific contributions developed within T2.4 that have been published. The first deals 
with a Deep Learning model for prognostics and the second with some development of these models 
improving its interpretability thanks to mixture of expert approach. 

3.1 Learning Representations with End-to-End Models for Improved 
Remaining Useful Life Prognostic 

This work has been published as: 

Alaaeddine Chaoub, Alexandre Voisin, Christophe Cerisara, Benoît Iung. Learning representations with 
end-to-end models for improved remaining useful life prognostic, European Conference of the 
Prognostics and Health Management Society, Jun 2021, Virtual event, Italy 

 

We proposed an MLP-LSTM-MLP architecture that is trained end-to-end to predict RUL. This specific 
architecture has been proposed in a prior study (An et al., 2020) and has exhibited encouraging 
outcomes for diagnostic purposes. Such architecture, should be able to overcome two main drawbacks: 

• Introducing an initial feature selection phase can potentially hinder the modeling process by 
removing important information and subtle signals that experts may have missed or overlooked. 

• Well-designed and uncomplicated neural networks often perform just as well as more intricate 
deep learning models. The latter requires extensive and energy-intensive experimentation to 
fine-tune their hyperparameters, which poses a technical obstacle for industrial applications. 

The proposed architecture is presented Figure 1. 

 

Figure 1: Architecture of the proposed model. To simplify the diagram, only one layer has been drawn for the 
MLPs. 

The model has been trained on the well-known C-MAPSS dataset; this dataset is probably the most 
used for prognostics purpose. The C-MAPSS dataset has been generated using the simulation program 
by monitoring the degradation of multiple Turbofan engines called commercial modular aero-propulsion 
system simulation. The description of the dataset can be found in (Saxena et al., 2008). 

Our model utilizes full time series data of each turbofan engine from the first cycle to failure, and does 
not rely on fixed sequence length, truncation, or padding. Therefore, the sequence length of each 
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sample may vary. We used 75% of the turbofan engines' run-to-failure trajectories for training and the 
remaining 25% for validation. 

The validation set was used to manually adjust the hyper-parameters through a few trials and errors. 
These hyper-parameters include the learning rate, the number of layers in the input and output MLPs, 
the number of LSTM layers, the number of neurons or cells in each layer, the activation functions, the 
dropout percentages, and the optimizer presents the optimal hyper-parameters discovered for the 
proposed model. 

 

Figure 2: Hyper-parameters of the proposed mode 

Due to the random initialization of the model parameters, the optimized values may differ between 
training runs. To account for this variability, we conducted 10 training runs and report the mean values 
and standard deviations of the model's performance on the four data sets in Figure 31. The comparison 
with state-of-the-art models in the literature is presented Figure 4. 

Further insight can be found in the afore-mentioned paper. 

 

 

Figure 3: Results of the proposed model on the 4 subsets of CMAPSS. 

 

1 In this table the RMSE is the Root Mean Square Error and the Score is a penalty function that 
disadvantage late prognostic rather than early. Both are defined in (Saxena et al., 2008) 
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Figure 4. Different examples of RUL prognostic for engine units from the validation samples of each data set.

Table (2).

Table 2. Hyper-parameters of the proposed model

Hyper-parameter Value

Learning Rate 0.0001

Number of MLP layers before LSTM 3

Number of neurons in MLP layers 100/50/50

Number of LSTM layers 1

Number of LSTM cells 60

Number of MLP layers after LSTM 3

Number of neurons in MLP layers 60/30/1

Activation function for MLP layers Tanh()

Batch size 5

Dropout percentage 0%

4.5. Results and Discussion

Because of random initialization, the optimized model pa-

rameters values may vary across different training runs. We

thus evaluate the model’s performances across 10 runs, and

themean valuesand standard deviationsaregiven in Table(3)

for the four data sets.

Figure (4) shows the predicted RUL vs the gold value of the

RUL for four trajectories from the validation subset. We see

that theproposed model can follow degradation patterns even

in complex data sets as FD002 and FD004 with 6 operating

conditions. Thanks to our end to end learning approach, the

Table 3. prognostic performance of the proposed model.

DATASET FD001 FD002 FD003 FD004

RMSE
13.26
± 0.57

12.49
± 0.28

13.11
± 1.28

13.97
± 0.48

SCORE
284.88
± 42.32

571.4
± 37.45

352.39
± 179.96

1252.32
± 104.97

MLP that precedes the LSTM automatically learns a repre-

sentation of the input data that is relevant to the task of RUL

prediction. Figure (5) showsthenormalized raw input signals

of unit #13 from the FD004 data set, where no clear trend

can be seen because of the high variance in the data, which

is partly due to the operating conditions that vary from cy-

cle to cycle. Figure (6) shows the output signals of the first

MLP, wherenoticeable degradation pattern havebeen learned

from the normalized inputs and can be observed. Feeding

this learned representation to the rest of the model is more

efficient than handcrafting features that require expertise and

time. This first representation learning stage is particularly

useful when dealing with complex data sets where no clear

trend is seen, and also when inputs have a large number of

dimensions.

After this first MLP, the role of the LSTM layer is to capture

temporal patterns and dependencies in the time series. Fig-

ure (7) shows the signal at the output of the LSTM. We can

see that this part of the model minimizes the variance of the

5
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Figure 4: comparison of the proposed approach with state-of-the-art results. 

3.2 Towards interpreting deep learning models for industry 4.0 with 
gated mixture of experts 

This work has been published as: 

Alaaeddine Chaoub, Christophe Cerisara, Alexandre Voisin, Benoît Iung. Towards interpreting deep 
learning models for industry 4.0 with gated mixture of experts. 30th European Signal Processing 
Conference, EUSIPCO 2022, Aug 2022, Belgrade, Serbia. 

The objective of this work was to apply the Gated Mixture of Experts (GMoE), to the model developed 
and presented in the previous section, to interpret the deep learning model trained on industrial data. 
We also proposed to add a regularization term to the loss that includes prior knowledge and enables to 
boost the performances. Unlike traditional deep learning models, this approach decomposes parts of 
the model in a way that can be understood by domain experts or users. The study transforms the above 
presented model that performs well on the C-MAPSS dataset for predicting the RUL. The structure of 
the model is presented Figure 5. The first MLP layer of the previous model is replaced by a MLP GMoE. 
The same hyper-parameters as above have been used. Indeed, this architecture has been selected 
since it is expected that the first part of the model, i.e., GMoE, will be able to retrieve/discover that the 
turbofan measurement were done under several operating conditions (OC). We know from the dataset 
description that 6 OC were used to generate the data. 

The number of OCs in real-world scenarios may not be known and is often estimated by experts. To 
test the robustness of the approach, experiments were conducted using 6 and 9 experts. Results may 
vary across different training runs due to random initialization, so each experiment was run 20 times to 
calculate the variance. Model parameters were chosen on the validation corpus by manually testing a 
few reasonable values and early stopping was used during training with a maximum of 2000 epochs. 
The model with the lowest validation loss was chosen for evaluation on the test corpus. 

At each timestep, the GMoE network produces a probability distribution across the experts, from which 
we can determine the predicted cluster by identifying the argmax. The true value, using the OC, and 
the predicted clusterings can be evaluated using the normalized mutual information (NMI) (Kvalseth, 
1987). 

The clustering generated by the simple GMoE-LSTM-MLP is shown Figure 6. Results indicate that in 
over 87% of runs, only one or two experts are utilized, and in such cases, the corresponding NMI is at 
most 0.5. When nine experts are available, the GMoE may use up to five experts, but this occurs in only 
5% of the runs. These findings suggest that although the gating network fails to recover the expected 
six clusters, increasing the number of clusters to three results in more correlated clustering with the 
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operating conditions (NMI reaching 0.5 and 0.7 in one run). However, for larger values of Nc, up to five, 
the NMI decreases, indicating that the target six clusters are too specific for the simple GMoE. 

 

 

Figure 5: GMoE-LSTM-MLP architecture with m experts. 

 

 

Figure 6: Clustering evaluation when the simple GMoE-LSTM-MLP is trained on all data; left column (a): m = 6; 
right column (b): m = 9. 
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Fig. 1. GMoE-LSTM-MLP architecture with m experts.

IV. CASE STUDY: INTERPRETING PROGNOSTIC MODEL

A. Experimental setup

The C-MAPSS dataset [15] is a widely used benchmark in

the literature for evaluating approaches for remaining useful

life (RUL) prediction of turbofan engines, i.e., the remaining

time before it breaks. It is divided into four sub-data sets

(FD001 through FD004). In this work, our objective is to

analyze whether a deep learning model trained to predict

the RUL also learns to decompose the problem according

to operating conditions. An operating condition (OC) can

be defined as the circumstances under which an equipment

operates, different operating conditions may lead to different

sensor values. Therefore, we focus our experiments on the

FD002 dataset, which contains six operating conditions and

one failure mode (one possible cause of the engine failure).

The data contains 24-dimensional time series that corre-

spond to measurements of sensors equipping a simulated tur-

bofan. 3 of these 24 inputs represent the operating conditions

of the turbofans: because we are interested in recovering the

operating conditions, these 3 sensors are not included as input

to our model, but are rather used to compute the gold/ground

truth cluster label in our experiments, which is named OC.

Because in this dataset every time series lasts until the

engine breaks, the true RUL is a simple decreasing linear

function: the remaining time until the end of the series.

However, following standard practices [16]–[18], the engine

is considered to be in an healthy state as long as more than

130 timesteps of useful life remains. This gold RUL is used

to train our regression model, while the ground truth OC are

not used to train the model, but only to compute the clustering

evaluation metrics. In other words, our approach is supervised

with respect to the RUL but unsupervised with respect to the

operating conditions. For model development, a set of 260

operating-to-failure trajectories is provided. Weuse 75% of the

trajectories as the training subset, and 25% as the validation

subset. In the test set, 259 sequences are provided to test the

performance of the proposed approaches.

Among the state of the art approaches for this dataset, [19]

proposed a model that outperforms other approaches when

multiple OC are present due to its design architecture which

is an end-to-end trained MLP-LSTM-MLP. In their paper, they

observed that the first MLP is able to reduce the sources

of variability that are not relevant for RUL prediction. The

OCs in the FD002 dataset are considered one of these sources

because they can change from sample to sample, leading to

measurement values with different averages while the health

of the turbofan engine smoothly degrades.

We propose to replace this first MLP stage by a GMoE

in order to interpret the clusters that the GMoE creates.

The resulting model thus follows a GMoE-LSTM-MLP ar-

chitecture as shown in Fig. 1: the experts and the gating

network are MLPs, as in the architecture of the original model.

Indeed, this architecture has been selected since it is expected

that the first part of the model, i.e. GMoE, will be able to

retreive/discover that the turbofan measurement were done

under several operating conditions (OC).

In the following, we use the same hyperparameters as

those proposed in [19], while duplicating the same first MLP

architecture for the experts and the gating network.

Our gated network (GN) outputs at each timestep a distri-

bution over the experts; the argmax of this distribution is the

predicted cluster. Both gold and predicted clusterings may be

compared with the normalized mutual information, which is

defined as follows [20]:

N M I (OC, GN ) =
2⇥ I (OC, GN )

[H (OC) + H (GN )]
, With:

I (OC, GN ) = H (OC) − H (OC | GN )

(4)

where H is the entropy, and I is the mutual information

between both clusterings. The NMI is an external measure

between 0 (no mutual information/ independent clusterings)

and 1 (perfect correlation/ same clusterings).

B. Results and discussion

We know from [15] that 6 OCs occur in this dataset. In a

real-world scenario, the number of OCs may not be known,

for instance when the data are post-processed. In addition,

they are usually estimated by experts, which is subject to

error. We experiment next with 6 and 9 experts to assess

the robustness of our approach to an erroneous prior about

the number of discrete conditions. Furthermore, because of

random initialization, the results may vary across different

training runs, we thus run each experiment 20 times to

compute the variance. Model parameters are chosen on the

validation corpus by manually testing a few reasonable values.

In particular, early stopping is used during training, with a

maximum number of epochs set to 2000. The model with the
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To get better results, we introduced a regularization term to the loss. The idea is to add a posterior 
regularization term to the loss function that encourages the frequency distribution of Experts to match 
known prior. We assumed a uniform prior frequency distribution over the 6 OCS. The regularization 
term can be balanced using a weight factor (Lambda). Figure 7 shows the results with the regularization 

term and several weight ().In this case, regardless of the number of experts used, mostly 3 clusters 
are predicted that match the OCs with an NMI of 0.7. Increasing the number of experts increases the 
NMI logarithmically, which encourages the model to decompose the data in an interpretable way. The 
number of predicted clusters is not larger than the number of OCs even when using all 9 experts. The 
model's predictive performances do not vary much across conditions and have RMSE values close to 
the state of the art. Changing the strength of the constraint does not result in significant changes in 
model interpretability or performance. 

Further insight can be found in the afore mentioned paper. 

 

Figure 7: GMoE-LSTM-MLP with knowledge-based loss constraint results, the constraint value is not part of the 

validation loss; left column (a): m = 6; right column (b): m = 9; different weight factors () are considered. 

4 AI-PROFICIENT prognostics use cases 

Different technologies have been developed in the 2 UCs of task 2.4. The following sections provide a 
short recap of the use case and the approaches followed in order to develop the prognostics capabilities 
at the edge level. 

4.1 CONTI3 – Released extrusion optimization. 

4.1.1 UC description 

Relaxed extrusion is a concept to improve the quality of the semi products produced on the Combiline. 
When extruding the objective is to have the minimum tension inside the product so that shrinkage 
effects after cutting are minimized to avoid length issues and bad weight repartition on the surface of 
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the tire (RFPP deviations). There are 3 factors to consider minimizing tension in the product among 
which the easiest controllable during the production is the conveying, the 2 others being the flow 
balancing in the die and the visco-elastic phenomenon.  

4.1.2 Proposed solution 

In this use case, the service must predict the drift of the extruder that can lead to not relaxed product. 
When a not relaxed product is about to occur, some changes in the setting point of V1 need to be done. 
Such changes can occur manually or thanks to a control loop at the line level. Hence the goal of the 
model will be to prognosticate the remaining time before the V1 setpoint change. 

Some data are available on PETA2 repository. Thank to discussion with Continental expert, we have 
defined some rules to segregate the data into relevant segments. Indeed, this use case is focused on 
in-production drift. Hence, all set-up time, stoppage, sidewall production, trials… have to be removed 
from the data. Only sequences of thread production have been kept. 

The proposed solution is based on the MLP-LSTM-MLP model presented on section 3.1. Furthermore, 
thanks to the analysis of the data and some initial trials, the use case has been reformulated as 
classification task for which the time frame remaining to a V1 setting point change has to be predicted. 
Indeed, no other measurement of the relaxation of the product is available. 

4.1.3 First developments 

In this early development the classes used represent the number of half minutes remaining before 
change, this makes evaluating the performance of the model easier to understand and analyze. As 
shown in Figure 8, when the time left to change is more than 5 minutes (before the green vertical line), 
the frames are considered to belong to a class that intuitively represents a relaxed product on the line. 

 

Figure 8: The remaining time to change with the true classes used for training the model. 

In this development stage, we used only 1 month of data and did not fully optimize the model. The aim 
is more to agree on the objective of the model and the metric to evaluate the performances.  

Some results have been obtained and are shown in Figure 9 and Figure 10. 

As a conclusion, the proposed model can predict V1 setpoint change in about 55% of the trajectory, in 
the remaining 45%, the model is not able to predict the V1 setpoint change (predicted class 11 vs actual 

 

2 PETA is a cloud repository for research data hosted by UL. The PETA service allows to store data on 
a centralized platform, hosted on the servers of the UL and managed by the UL digital department. 
Secured by an authentication, the access to the data is done through a WEB browser or via a software 
installed on the computer. The service guarantees the partitioning of data by isolating them by structure 
or by project. This data repository is reliable, secure and resilient. 
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class from 10 to 1 in Figure 9). When deviations are detected, as shown in Figure 10, most of the points 
are around the diagonal, which provides proof of concept for the future development of the approach. 
When setpoint change is not detected, we assume that the change cause are not in the hot part of the 
Combiline but in its cold part for which we do not have data. 

 

 

Figure 9: Confusion matrix between actual and predicted classes 

 

  

Figure 10:Confusion matrix between actual and predicted classes without the final class that represents the 
relaxed product. 

The next steps for the models are to consider external factors that have some influence as reported by 
the process engineer and the Combiline driver, such as Air Temperature, type of compound and more. 
It is also planned to consider the whole dataset (over the 1,5 years) to train the model.  

Bearing in mind the solutions will be delivered to the operator, Continental and the ethic teams have 
been put in the loop. A preliminary ethical issue has been raised regarding how the operator’s 
perception of the accuracy of the AI suggestions will affect the operator’s trust and subsequent use of 
them. The issue can be partially addressed by making the operator’s use of AI suggestions facultative, 
but attention to the format in which the suggestions are presented will also be needed. 

4.1.4 Service development 

In order to further develop the prognostic model, we utilized data from the year 2021, as train and 
validation sets, and the first quarter of 2022, as test set, to assess the model's generalization 
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capabilities. This was done to ensure the model's accuracy and relevance in predicting outcomes based 
on real-world production data. To simplify predictions and make them more accessible for operators, 
we reduced the output classes from 11 to 6. Instead of using half-minute increments for measuring the 
time remaining for set point V1 change, we opted for a one-minute frame. This decision was driven by 
the need for clear visualization and easier interpretation, as depicted in Figure 11. 

 

Figure 11: The remaining time to change with the new true classes used for training the model. 

For the development of this model, we used data collected during the production process in 2021. The 
initial step involved clustering production times, which yielded multiple trajectories representing various 
production phases. In order to build a model capable of predicting changes in the V1 setpoint, we only 
considered trajectories that exhibited this change. This meant excluding stable productions from our 
dataset, leaving us with approximately 60% of the total trajectories.  

We employed the same base architecture as before, which is based on a Multi-Layer Perceptron (MLP) 
- Long Short-Term Memory (LSTM) - Multi-Layer Perceptron (MLP) structure. This hybrid architecture 
combines the strengths of both MLP and LSTM networks, allowing the model to effectively learn and 
capture complex patterns within the data. MLP layers provide the capacity to learn non-linear 
relationships, while the LSTM layers enable the model to retain and process information over extended 
time periods. 

The performance of the prognostic model is illustrated through confusion matrix heat maps generated 
using multiple trajectories from the first quarter of 2022. These heatmaps display the predicted values 
against the true values (see Figure 12). 

While the overall accuracy of the model exceeds 60%, it is important to note that the previously 
encountered issue of only predicting one class has been resolved, enabling the model to predict 
deviations more effectively. The relative loss in accuracy can be attributed to some values not being 
situated directly on the diagonal, indicating that there may be occasional discrepancies between the 
predicted and true values. However, these discrepancies are generally minor, with predictions often 
being slightly early or late compared to the true values. The overall results are still considered to be 
satisfactory, as the model is capable of capturing the essential dynamics and changes in the V1 
setpoint. 
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Figure 12: Confusion matrix for the 6 classes (see Figure 11) of the prediction model. 

 

4.1.5 Deployment in AI-PROFICIENT platform 

The goal was to develop a model specifically designed for prognostics. This model would be preceded 
by another model specializing in diagnostics, making the learning process more efficient and resulting 
in smaller, more manageable models. The implementation of such models on the edge would enable 
real-time monitoring and analysis, ultimately improving the overall production process. By employing a 
two-stage approach, with separate models for diagnostics and prognostics, we can effectively identify 
issues in the production process and predict potential changes in the V1 setpoint. This streamlined 
system will not only enhance the accuracy of predictions but also facilitate easier implementation and 
interpretation for operators in a production setting. Figure 13 presents the corresponding architecture. 

At some point during the deployment of the prognostic algorithm it was detected that the V1 values 
were not truly representative of a relaxed product on the production line. This finding led to the 
reconsideration of the prognostic/diagnostic model's utility, as the V1 values may not be a reliable 
indicator of the product's actual state or quality during production. Consequently, any model built upon 
these values would not be able to deliver accurate assessments or predictions regarding product quality 
or potential issues within the production process. Under such circumstances, and, considering the 
potential harm that providing misleading predictions could produce to operators, it was decided to cease 
the deployment of the algorithm in the AI-PROFICIENT platform. In any case, the prognostic algorithm 
and its value have been validated and would produce satisfactory results under good data quality 
conditions.  
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Figure 13: Implementation architecture of the CONTI-3 prognostic service. 

4.2 CONTI5 – Cutting Blade wear diagnostics. 

4.2.1 UC description 

The aim of CONTI-UC5 is to develop a solution that will allow the operators and maintenance managers 
to know about the current wear state of the blade that is placed on the tread cutting system as well as 
giving some clues of how this wear will evolve in the future. In a daily basis, this blade keeps wearing 
until there is a point in which it produces bad quality cuts (hence, having to scrap the tread it cut) or it 
gets stuck. Consequently, the production line has to be stopped and the blade replaced incurring in the 
consequent downtime costs. 

The first steps towards the development of the algorithms that would enable CONTINENTAL deciding 
when to change the blade according to wear estimations are detailed on deliverable D2.3 - Predictive 
AI analytics for component self-diagnostics, for further details, please refer to this deliverable’s chapter 
3.1. 

As stated in D2.3, survival-like models try to model the probabilities of an asset being alive after certain 

usage/cuts. Yet, from the operator point of view, this information is not easily applicable on the 

production line and its counterintuitive. The survival value of 0.95 does not mean that the blade that is 

currently working is at the 95 % of its life, instead, it means that only 5 % of the blades do that many 

number of cuts. For that reason, a workaround that will allow the users to have a more understandable 

algorithm as well as to give some prognostic capabilities is needed.   

  

4.2.2 Proposed solution 

Considering the previous, it is decided to produce a Health Index that will reflect the health condition of 
the asset that implicitly considers the probability shown by the survival function. This Health Index (HI) 
rescales a certain number of cuts to a 0-1 scale. This way, the algorithm can be used not just for 
diagnosis purposes but for prognosis purposes, as, the estimated remaining HI can be known based 
on the expected future cuts. 
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Figure 14: a) Survival function with a potential FinalCutsPoint. b) Example of a Health Index based on that Final 
Cutting Point. 

For this approach to be valid there is a key point that has to be considered: determining the value of the 

Final Cuts Point. That is, identifying the amount of cuts that does not incur in too high cost caused by 

unplanned stoppages because of worn blades; or a point in which too many blades are changed early 

without considering the replacement cost. For the optimization of this point these two factors are 

considered:  

• Cost of unplanned blade change 

• Cost of a regular blade change 

Given that using exact values to these factors is complex, different scenarios are simulated using the 

survival function and considering different quantiles of the survival function as Final Cutting Point. In 

each simulation, certain simulation parameters are considered:  

• Monthly Cuts (MC): The average number of cuts carried out during a month, which is fixed 

value. 

• Planned Final Cut Point (PFCP): The value of cuts that will be used by operator to replace the 

blade, which is varied in each simulation. 

• Unplanned Blade change cost (UBCC): The cost associated to an unplanned blade change.  

• Planned Blade change cost (PBCC): The cost associated to a planned blade change. 

The schema of the simulation is depicted in the following Figure 15: 
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Figure 15: Schema of the simulation. 

The simulation is run various times, with different PFCP values and considering different UBCC/PBCC 

ratios. The following Figure 16 depicts the results of the simulation: 
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Figure 16: Simulation results under different UBCC/PBCC ratios. Bars represent the quantile values (or PFCP, 
which is equivalent). a) UBCC/PBCC = 1 b) UBCC/PBCC = 2, c) a) UBCC/PBCC = 10, d) a) UBCC/PBCC = 100. 

Given the distribution of the data and, considering the results of the different UBCC/PBCC scenarios, it 
is clear that, unless the incurred cost when the blade change is unplanned is much greater (more than 
ten times the cost of a planned one), there is no economic incentive to replace the blade before it 
breaks. This could be partly caused due to a bad quality of the data (which comes from the scrapping 
of free text) as it has very long tails on the distribution (see the following Figure 17). However, it is not 
possible to trace back or to acknowledge if the data records are actually valid.  

 

Figure 17: Density plot of the number of cuts carried out by the blades on the dataset. 
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At the same time, it is difficult to quantify the actual estimations of a planned and an unplanned blade 
change. In addition, there are other aspects (such as the stress felt by the operator when an unexpected 
production line stoppage occurs) that could be improved regardless of the economic justification. For 
that reason, the end-to-end approach is developed.  

For that purpose, the Health Index values of the different scenarios are computed. In each of them, the 
final cutting point is considered the point at which the most economical benefit would be reached 
according to the simulation. Then, the intersecting point between the FinalCutsPoint and the Survival 
curve is used, this intersection point is then rescaled to 1-0 scale. This way the cuts consider the 
probability of being alive and do not just increase gradually till reaching the FinalCutsPoint. The different 
Health Indexes are depicted in the following Figure 18. 

 

Figure 18: Health Index development for different Final Cutting Points. 

It is noteworthy that, in practice, the Health Index is almost equal to the survival curve. If the Final 
Cutting Point is close to the point at which the survival function reaches 0, then, the Health Index will 
be exactly equal to the survival function. However, this is not how the Health Index is meant to be used. 
Ideally, the FinalCuttingPoint is reached way before the survival probability is 0, and, in such 
circumstances, the curves will differ. In such scenario, the user will have a more intuitive indicator that 
better reflects the potential condition of the blade, instead of having to interpretate the probability of the 
asset of being alive. 

 

4.2.3 Deployment in AI-PROFICIENT platform 

At the writing of deliverable, some changes have been made on the data pipeline on AI-PROFICIENT 
platform as described in D3.5. The aim of these changes is to guarantee an improved quality of the 
data that is stored on the databases. With these changes it is expected that, as the models will be 
periodically retrained in the future, the outcomes of the models will be more accurate. 

For more details of the deployment of this algorithm please refer to D3.5: Future scenario-based 
decision making.   
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5 Conclusions  

Providing prognostics at the edge for critical assets is a must to be for deploying predictive maintenance. 
The expected outcome of Task 2.4 is to develop some services enabling prognostics at the edge for 
AI-PROFICIENT platform as well as some scientific contributions in the field of edge prognostics. This 
deliverable reports these developments.  

Starting with Scientific development for prognostics leveraging deep learning MLP-LSTM-MLP model, 
the task then develop 2 services for CONTI-3 and CONTI-5 use cases. Table 5 summarizes the UCs 
AI technologies where edge prognostics have been developed. 

Table 5: AI enhanced edge prognostics UCs. 

UC Type of AI enhancement technique  Responsible 

CONTI3 Deep Learning Model for prognostics UL 

CONTI5 Blade health index model for prognostics TEK 

As already seen through literature review, AI plays a major role in prognostics. AI-PROFICIENT brings 
some new elements on the table. Indeed, thanks to the work performed in task 2.4 and the provided 
use case, some relevant advances have been provided including publication and development in use 
cases. 
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