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Disclaimer 

This document contains a description of the AI-PROFICIENT project work and findings.  

The authors of this document have taken any available measure for its content to be accurate, 
consistent and lawful. However, neither the project consortium as a whole nor the individual partners 
that implicitly or explicitly participated in the creation and publication of this document hold any 
responsibility for actions that might occur as a result of using its content.  

This publication has been produced with the assistance of the European Union. The content of this 
publication is the sole responsibility of the AI-PROFICIENT consortium and can in no way be taken to 
reflect the views of the European Union.  

The European Union is established in accordance with the Treaty on European Union (Maastricht). 
There are currently 28 Member States of the Union. It is based on the European Communities and the 
Member States cooperation in the fields of Common Foreign and Security Policy and Justice and Home 
Affairs. The five main institutions of the European Union are the European Parliament, the Council of 
Ministers, the European Commission, the Court of Justice and the Court of Auditors (http://europa.eu/). 

AI-PROFICIENT has received funding from the European Union’s Horizon 2020 research and 
innovation program under grant agreement No 957391. 
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Executive Summary 

The Deliverable D3.2 is a document of AI-PROFICIENT project delivered in the context of WP3 
(Platform AI analytics and decision-making support), and more precisely T3.2 (Predictive AI for process 
quality assurance). The deliverable provides a summary of the advances made during the project 
related to the development of AI analytics for the identification of potential process incidents and failures 
in their early stages. The task is based on the existing knowledge of the processes and on empirical 
data for the development of ML models that allow to help the operator in the exploration of the data and 
offer learning capabilities. 

D3.2 provides a brief description of how AI technologies are a relevant aspect to ensure the quality of 
the process and consequently the quality of the product in manufacturing processes. However, the 
deliverable is mainly focused on describing the algorithms for AI predictive analytics for specific use 
cases. This analysis has been based, as mentioned above, on the combination of specific knowledge 
of the processes, the historical data gathered from the monitoring of the processes and the use of ML 
algorithms. 
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1 Introduction 

The objective of this deliverable is to collect and present the contributions that have been developed 
related to the development of models for the early identification of potential incidents and failures that 
can have an impact on the quality of the process and the product. To deploy such AI models capable 
of predicting the real-world anomalies and faults at the process level, this task will rely on the process-
specific knowledge, as well as the empirical data from the industrial production process in the context 
of AI-PROFICIENT project. 

This deliverable firstly explains how AI technologies can contribute to ensure process and product 
quality within a manufacturing process, and finally it focuses on describing the use cases, the specific 
technologies, and ML algorithms developed during execution within the project framework. 

These technologies will provide the necessary functionalities to AI-PROFICIENT to provide the 
S_PRED service detailed in the deliverable D1.5:  

Table 1: S_PRED service description.  

Service ID  S_PRED 

Service input and 
dependency on 

other services:    

This service requires the processed sensor reading produced in by the pre-
processing service together with the KPIs produced by the diagnostic and 
anomaly detection service. The computation of quality and its forthcoming 
development could be involved in the UCs. 

Service output:   The aim of this service is to produce process quality indicators (KPIs) that reflect 
the goodness of the manufacturing process and predict how these indicators will 
evolve in the near future. This way, it allows operators to carry out maintenance 
actions that will prevent the loss of quality when it is foreseen, that is the possible 
evolution of those KPIs.   

High level service 
description:   

This service is aimed at watching over the quality of the production. As such, it 
needs to verify the assets are in good health conditions, and check that the 
various quality related measurements taken during the process are also under 
tolerances. Based on the recent readings, it will also provide estimations of how 
quality will evolve in the future to foresee possible losses of quality and act 
accordingly before quality drops.  

These two services are intended to cover the _ PRED requirements identified and detailed in the 
deliverable D1.4 as result of T1.4. showed in the following table: 
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Table 2: Functionalities to be provided by the AI-PROFICIENT project (from D1.4).  

AI-PROFICIENT Functionalities  ID  

Monitoring  _MON  

Diagnostic and anomaly detection  _DIA  
Health state evaluation  _HEA  
Component prognostics  _PRO  

Hybrid models of production processes and digital twins  _HYB  

Predictive Production quality assurance  _PRE  

Root-cause identification  _ROO  

Early anomaly detection  _EAR  

Opportunistic maintenance decision-making  _OPP  

Generative holistic optimization  _GEN  

Future scenario based Lifelong self-learning system  _LSL  

Human feedback  _HUM  

Explainable and transparent decision making  _ETD  

During the preparation of the D1.3, where the different Use Cases (UCs) were explained and a first 
sketch to their potential final solution was presented, five UCs were potential candidates for the 
development of AI technologies for the detection of failures and anomalies early to ensure the quality 
of both the process and the project, as shown in the following Table 1. 

Table 3: Original excerpt of expected partners involvement in T3.2 for each use case (from D1.3).  

WP/Task  CONTI-
2  

CONTI-
3  

CONTI-5  CONTI-7  CONTI-
10  

INEOS-1  INEOS-2  INEOS-
3  

WP3– Platform AI analytics and decision-making support 

3.2 Predictive AI 
for process quality 
assurance   

    TEK,  
INOS 

INOS,  
UL 

 TEK TEK, 
IBE, 
INEOS 

 
 INOS 

However, CONTI-5 could not be used finally to validate these technologies because the installation of 
the camaras has been delayed due to problems with the distribution of the microchips. In the case of 
CONTI-10 use case, the proposed technologies and solution oriented to quality assurance required the 
segmentation, characterization, and pre-processing of the entire process stage by stage, considering 
the quality indicators of each one of them. This task could not be tackled due to the complexity of the 
process and for this reason, a partial dataset has been used, corresponding to the initial extrusion 
process (from CONTI-2 use case), to validate the proposed technologies. 

Additional work has been done and other use case has been developed by TEK related to the quality 
prediction in additive manufacturing, with the aim of predicting the quality status of the final part. Additive 
manufacturing provides many advantages in the manufacture of complex parts and one of its current 
challenges is to avoid defects in the manufactured parts. This use case aims to detect porosity using 
artificial intelligence methods. Porosity, as explained below, is a defect that affects the mechanical 
performance of parts and is currently only detected by subsequent inspection, which leads to additional 
manufacturing costs. 

In the following sections, a detailed description of the main _PRED components can be found, as well 
as their use in the different use cases.  
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2 AI-Technologies for process quality assurance and 
product quality assurance 

Manufacturing converts raw material inputs into finished product outputs and value-added services 
through the coordination of relevant manufacturing facilities, resources, and activities. Some of the most 
promising applications that can be implemented during the manufacturing process include applications 
to enable smart design, smart planning, materials distribution and tracking, manufacturing process 
monitoring, quality control, and smart equipment maintenance (represented in Figure 1). Manufacturing 
process monitoring and production quality control are key and important applications to be covered 
within the AI-PROFICIENT project. 

 

Figure 1. Data-centred manufacturing process 

 

2.1 Process monitoring 

The manufacturing process can be affected by multiple factors. These factors can affect the process 
and influence changes with respect to the quality of the product. In addition, they can also interact with 
each other and that is why it is important to monitor the different stages and/or steps of the process in 
real time. However, it is often difficult to trace which factors affect manufacturing processes.  

Fortunately, historical data provides effective support for monitoring manufacturing processes. And with 
the use and predictive power of data analysis techniques, the most appropriate range could be 
prescribed for each factor. Statistical techniques and machine learning algorithms can be used for 
correlation analysis and cause-effects identification between factors and the measurable events or 
parameters, extracted from the pre-processing of the most influencing factors. 

Once the influence of the factors and their appropriate ranges of operation are known, the problem can 
be marked, and alerts and recommendations can be sent to the operators, for early detection of 
anomalies, so that they make the appropriate adjustments. This can ensure greater compliance in the 
manufacturing process because it will improve the quality of the process and consequently the quality 
of the product. Before production anomalies occur, anomalous events often reveal certain patterns that 
can be captured by the variety of data (e.g., process parameters) in time series.  
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Since such data is mostly time dependent, static models cannot process it effectively. Furthermore, the 
large amount of data cannot be processed with traditional data analysis methods, which are 
computationally intractable. By synthesizing the timing and causality factors, an early warning model of 
production anomalies can be established based on relevant ML algorithms, such as decision trees, 
neural networks, or others. Extracting patterns of abnormal event characteristics and trends in time 
series, it is possible to predict, in advance, whether production anomalies will occur ahead of time. With 
greater flexibility and less computing time, big data analytics can handle data from multiple sources. 
Taking balanced use into consideration, manufacturing processes can be dynamically adjusted based 
on big data analytics. 

 

2.2 Quality assurance  

Today, various data-driven quality control techniques are being developed for smart manufacturing. 
Many sensors are used to acquire data from the machine and the process (e.g., speed, pressure, 
temperature, time, etc.); and machine vision applications are employed to collect product quality data 
such as geometric parameters (e.g., thickness, length, roughness, etc.), tolerance parameters, etc. 

Data analytics are used then to generate early warning and alerts of quality defects and make a rapid 
diagnosis of the root causes. Based on historical data and process condition data collected from the 
machines and their operating environment, quality condition classification and prediction can be used 
to predict whether and how certain conditions are related to quality defects. Statistics and Machine 
Learning algorithms can be used to analyse process parameter data to identify the most influential 
parameters and their appropriate range with the goal of improving both process and product quality. As 
a result, the process factors or parameters that result in poor quality can be controlled and optimized. 

In addition, these data analytics equip manufacturing companies with a particular type of data-based 
reasoning ability. The lessons learned from one quality control use case can be transferred to another 
to prevent a recurrence of similar problems in the future. As a result, quality management can be 
integrated into every step or phase of the manufacturing process, from raw materials to the finished 
product. 

 

The following section describes the use cases in which data analysis technologies have been developed 
to predict and improve the quality of processes and the product. 
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3 AI-based predictive process quality assurance 
Demonstration scenarios 

3.1 Evaluation, management, and improvement of data quality for 
Extrusion Process (CONTI-2) 

3.1.1 Use Case description 

To achieve the necessary information throughout the different processes, useful data streams are 
obtained to provide the Artificial Intelligence and Big data algorithms. However, strategic decision- 
making based on these algorithms may not be successful if they have been developed based on 
inadequate low-quality data. ‘DQTS’ package has been implemented that contains a set of techniques 
and tools that allow monitoring and improving the quality of the information to measure a improve Data 
Quality (DQ) in streaming time series. These techniques allow the early detection of problems that arise 
in relation to the quality of the data collected. The package has been developed by TEKNIKER, it is an 
open source, and it has been used to analyse and improve the historical data collecting from Continental 
UC 2.   

3.1.2 Solution 

Next figure illustrates the process and flow to improve the quality of the data. The first step after 
accessing the historical data is the identification of gaussian variables to assign weights to Consistency, 
Typicality and Moderation metrics. (A). Next, the existence of the Reference Data Set, Range Data Set, 
Maximum Time Difference and Unit of Time is checked (B). The third step is the computation of DQ 
metrics using the DQ function in the complete set or by moving windows (C). If all the metrics reach the 
highest quality, it is concluded that the analysis set is correct. If the quality is not 1, a list of the metrics 
is returned in the order in which they should be treated. Next, using the deepDQ function, the problems 
with the first metric in the list are analyzed in depth (D). Finally, the decision is made to rectify the data 
set. In that case, using the handleDQ function the metric is corrected until it reaches a value of 1 (D) 
and the metrics are recomputed in step C. If data are not modified in relation to this metric, they are 
removed from the list and if there were more items left in the list, it returns to step D using the next 
metric in the list. After the complete inspection of the list is done, the final modified data set is available. 

 

Figure 2. Flow for the detection, inspection, and resolution of poor DQ problems. 

 

R library contains four main functions, and it is available in GitHub to be used by the entire R community: 
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• The DQ function performs the three steps described above. First, it checks the normality of the 
variables and the availability of the necessary parameters in the input arguments. If unavailable, 
they are estimated. Finally, the values of the DQ metrics are calculated and this function allows 
two ways to do so, the overall one and by windows in three different ways. 

Data Quality metrics are functions to associate a given time series with numerical scores to 
quantify the quality of that data. These values range from 0 to 1 where 0 is the worst quality 
and 1 is the higher quality. The global value of quality is a combination of all those 11 metric 
values: 

o Formats: Proportion of variables with the correct format (integer, date, categorical, ...). 
o Names: Proportion of variables well labelled. 
o Time Uniqueness: Proportion of unique values in the time or date variable. 
o Timeliness: Proportion of values captured in the appropriate time interval, that is, 

without exceeding the allowed waiting time. 
o Range: Proportion of values within the lower and upper bands that can be provided or 

simulated. 
o Consistency: Proportion of values within the 80% confidence interval. 
o Typicality: Proportion of values within the 95% confidence interval. 
o Moderation: Proportion of values within the 99% confidence interval. 
o Completeness: Proportion of non-missing values. 
o Completeness by variables: Proportion of non-missing variables. 
o Completeness by observations: Proportion of non-missing observations. 

 

• The deepDQ function takes the data, the name of the metric to inspect, and the parameters 
required for that metric as inputs. This function returns precise information regarding the data 
failures in the selected metric. 

• The handleDQ function estimates solutions to faults found in the data for the metric introduced 
as an argument. It returns the data set with the necessary changes for that metric to achieve 
the highest quality score. 

• The plotDQ function allows visualisation of the quality of the data. The output of the DQ function 
is introduced as an argument. In the case that quality has been calculated in the complete data 
set, the plotDQ function shows a bar graph where each bar indicates the numerical value of 
each of the metrics with magnitudes between 0 and 1. On the other hand, if the quality of the 
data has been computed by windows, a scatterplot is displayed with as many lines as metrics 
have been calculated and the time evolution of the metrics is shown. 
 

3.1.3 Application and validation  

Information of the extrusion process that is analyzed in CONTI-2 has been measured during the last 3 
years by sensors placed across the process. The data has been continuously collected and quality 
analysis of the data has been performed from the ‘DQTS’ package described in the previous section.  
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Figure 3. Quality metrics. 

After the quality analysis, the global quality indicator obtained from the dataset is about 0.999. This 
value is very high and implies that the dataset is consistent and of good quality. It contains no major 
problems, shortcomings or errors that could lead to poor conclusions from data analysis techniques. 
There are no temporality problems in the dataset because the 99.7% of the observations are completed 
as can be seen in Figure 3. It is assumed that the dataset is complete and with high quality.  

However, the information acquired from these sensors have not been measured in the same frequency. 
Some of them, such as the compounds and recipes used in the process have been measured in every 
change and the temperature in the extruders have been measured when some defined temperature 
change happens, others, such as the pressure and the speed in the extruders have been measured 
every second. Table 4 shows the frequencies and units of some of the measured signals. ‘DQTS’ 
package has been also used: firstly, to set the frequency to 1 second, which is the highest frequency in 
the original raw data, and a reasonable frequency because of the high variation of the screw speed 
when the extruders are in usage; secondly, for those signals with lower frequency in the original raw 
data, unmeasured time observations have been considered missing values; and finally, the missing 
values in the data have been inputted using Last Observation Carried Forward (LOCF) method.   
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Table 4: Summary of some of the measured signals. 

ID Unit of measure Frequency 

EX EX2 Compound Name 
Setpoint No unit Each change 

EX EX2 Temperature Feeding 
Zone Actual ºC Each 1ºC change 

EX EX2 Pressure Mass Screw2 
Actual bar Each second 

EX EX2 Speed Screw Actual 
rpm Each second 

 

3.2 Extrusion process quality assurance (CONTI-2) 

3.2.1 Use Case description 

During the extrusion process, one of the first stages of the tire production line, specific deviations occur 
that mean that the product, in this case the material, is not of the desired quality. The extrusion stage 
is where the different elements or materials are mixed (recipes) and that will make up the final product 
(rubber). It is an important stage because it results in a perfect sheet that will be used to make the tread 
and the sidewalls of the tire. However, it is not a continuous process. 

The need to produce different types of recipes, as well as other programmed or unscheduled repairs 
and replacements, led to successive interruptions and restarts of the production line, which are 
unavoidable, and they negatively influenced the quality of the tire tread. 

Because of production stops, when restarting, it is necessary to bring the production line to the optimal 
condition of productive performance, for which adjustments are made (now, manual control of set 
points). Until this point of production is reached, the tread that is produced tends to be of low quality 
and it is sent back to the extruders as it is of no use. The duration of the setup process determines the 
amount of rework that is created and returned to the extruders (also known as reintroduction) so as not 
to waste raw materials. 

In this use case and for the sake of extrusion quality insurance, IA technologies are enablers for the 
development of various solutions based on statistical techniques, prediction, and optimization 
algorithms to guarantee that the material obtained from extrusion is of good quality. In this sense, two 
solutions or approaches have been developed during AI-PROFICIENT project: 

1. Solution 1: Improving and optimizing the quality of the extrusion (section 3.2.2). The 
development of a surrogate model that will provide the operator with the best configuration so 
that the extrusion is optimal and minimizes the amount of 'rework' generated. That is, minimize 
the low quality of the material generated during the extrusion stage. 
 

2. Solution 2: Quality analysis tool (section 3.2.3). A support tool for the analysis and automatic 
quality assurance that will help the quality team in making decisions about the extrusion stage 
to improve the quality of the process and as consequence the quality of the material generated. 

Both solutions start from the pre-processing  of the historical data set, 3 years of historical data obtained 
from the continuous acquisition of data (real executions, stops, initializations for maintenance, 
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compounds...). As shown in the figure below, the data has been collected from the process through a 
set of sensors (temperature, pressure, speed, material configuration, speed configuration, profilometer 
measurement, profilometer objective…). Part of this pre-processing task has been explained in section 
3.1.3, where the ‘DQTS’ package has been used to analyse the quality of the data and to improve it. 
Subsequently, an automatic segmentation and characterization of the data has been carried out by 
calculating a set of statistical and descriptive variables. These variables characterise the process. Then, 
the measure of the profilometer has been used to detect and label when the extruded material reaches 
good enough quality standards. And finally, this dataset has been used later by the ML algorithms to 
find the optimal setups to maximize the quality of the rubber.  

 

Figure 4. Pre-processing data (workflow) 

To deal with this UC, two services to cover Solution 1 and Solution 2, with their functionalities, are being 
developed in the AI-PROFICIENT project (see  

Figure 5) and work is still ongoing on the necessary tasks to complete its deployment in 
CONTINENTAL’s infrastructure. 
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Figure 5. Diagram of the deployment of both solutions in CONTINENTAL’s infrastructure 

 

3.2.2 Solution 1: Improving and optimizing the quality of the extrusion 

The objective of this solution is to provide the operator with the optimal extrusion setups when the 
extrusion process is starting. The AI module fed with real-time signals of the extruders and some 
suggestions are provided to get as fast as possible best quality of extruded materials based on the AI’s 
knowledge. 

Optimization of the extrusion process has been done by a population-based optimization algorithm (Wu, 
Mallipeddi & Suganthan, 2019) on which the objective function is defined by Machine Learning 
algorithms based on historical data. Population-based optimization algorithms are a kind of optimization 
solvers that approximates the optimal solution instead of finding the optimal mathematical solution. A 
population is defined as a set of possible solutions which are evaluated by a fitness function and then 
transformed by the algorithm with the aim of finding the optimal solution. 
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Figure 6. Optimization process approach 

Thereby, the objective function, i.e., that is used as the fitness function, is an ensemble of two models.  

The first model (called ‘Readiness model’) that has been developed is a Random Forest Classifier 
which predicts the steadiness of the process as either (1) rejected extrusion (material is not good 
enough and has not been measured in the profilometer), (2) not steady extrusion (material’s 
profilometer value has not became steady), or (3) steady extrusion (material’s profilometer value has 
become steady).  

 

Figure 7. Readiness model. Real-time quality prediction to restrict the input space. 

For the cases with a steady prediction label in Random Forest model, a second model (called ‘Speed 
setup optimizer model’) based on Gradient Boosting Regressor (XGBoost) algorithm, has been 
trained to predict the error associated with the profilometer’s target value as a measure of the quality of 
the extruded materials. Therefore, each individual (represented by the controllable variables from an 
extrusion) in the population-based optimization algorithm has been evaluated firstly using the 
Readiness model. 

If the predicted label of the Readiness model is the rejected class or the not steady class, the individual 
has an associated large fitness. Instead, if the predicted label of the Readiness model is the steady 
class, the associated fitness of the individual is given by the predicted value of the Speed setup 
optimizer model. Thus, the problem is a minimization problem.  
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Figure 8. M2.1: Search algorithm (Population based algorithm) for optimization based on surrogate modelling. 

 

3.2.3 Solution 2: Quality analysis tool 

The solution proposed here relies on the exploitation of the data from the use of AI technologies to 
identify and predict the correlation and cause-effect relationship among parameters and quality factors 
for extrusion process from the results obtained after the pre-processing of the historical dataset 
explained in section 3.2.1 .  

The pre-processing of historical data set and evaluating the quality of signal has been the starting point 
for this solution. From this dataset, the ‘Solution 2: Quality analysis tool’ offers the implementation of a 
software application (a set of functionalities) for the study of correlations and cause-effect relationships 
between the parameters of the process and the desired quality characteristics.  

As it was previously stated, among numerous control parameters, generally influencing factors, some 
subset of them mainly affects the quality of the final product. This software and its functionalities will 
provide support for automatic quality analysis and will help the end-users, mainly quality managers, to 
identify process parameters, focused on those parameters that are controllable and that could be 
modified by the operator, that affect the quality of the process and the quality of the material obtained 
after the extrusion process. In the UC2, the quality of the tread is affected by the process stability which 
is determined from the profilometer measurement. The proposed solution incorporates a set of 
functionalities to automatically analyse and evaluate the correlation and effects of the extrusion signals 
(controllable parameters) with the stability of the process and the profilometer measure. In addition,  it 
allows to perform a statistical control of the process to predict and compare its current behaviour against 
its nominal behaviour. 

These functionalities, statistical and machine learning algorithms, will support a set of phases for the 
automatic analysis of the pre-processed historical data: (1) the correlation analysis to identify the 
relationship between parameters, (2) the cause-effect analysis to identify the relationships that lead to 
a state of quality or to other, and (3) the early identification of anomalies or deviations in the process in 
relation to the nominal behaviour (when quality deviations do not occur). 
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Figure 9. Phases for the development of the functionalities for correlation analysis, cause effect identification and 
early anomaly detection. 

The types of algorithms, statistical and Machine Learning, are numerous and within this UC some 
techniques have been examined and finally implemented, to extract the most influential parameters that 
affect the characteristics of the product or process, from simple algorithms, interpretable and easily 
transferable to rules that can be later easily interpretable for the end-user.  

The software application (interactive web application) and its functionalities for the correlation analysis 
based on statistical techniques, cause-effect identification through ML, and early anomaly detection for 
quality assurance have been developed in R code and they are being deployed as a service in 
CONTINENTAL’s infrastructure (see  

Figure 5). So, the service will be a support for the decision-making of the end-users (quality managers 
or operators in charge of the quality of processes and products) who are not analysts but final 
consumers of the technology. 

  

3.2.4 Application and validation of solution 1: Improving and optimizing the quality of 
the extrusion 

The validation of the models that have been fitted and used as objective function in the optimization of 
the extrusion process has been done if the following way. For the Readiness model, which is a Random 
Forest Classifier as mentioned above a Stratified Cross Validation method has been used, because of 
the imbalance in the output variable, and F1 and accuracy metrics have been considered. Several 
experimentations have been conducted to analyse the variability in the prediction. The Random Forest 
algorithm has been trained with three data sets: one containing all the signals from the extrusion, a 
second containing only the uncontrollable variables and a third with the controllable ones. The results 
from each of them have been significantly similar. Therefore, it was decided to use only the controllable 
variables because they are variables on which actions can potentially be taken. Results are shown in 
Figure 10. 
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Figure 10. Readiness model results for the three datasets (All variables, Controllable variables only and Non 
controllable variables only). 

Besides, the Random Forest impurity, a common measure used in decision tree algorithms to decide 
the optimal split from a root node and subsequent splits (Louppe, Wehenkel, Sutera, & Geurts, 2013), 
has been used to analyse the importance of the features in the solution, which has shown that the most 
important variables to consider in the steadiness of the process were related to the speed setups used 
in the restart. 

For the validation of the Speed Setup optimizer model, a random train/test split has been conducted, 
with the 80-20% of the samples and the well-known R squared metric. For the search of the optimal 
parameters a simple Cross Validation method has been used to optimize the max depth and the number 
of the estimators on the trees using the training set and three folds.  

As the objective of this use case has been the optimization of the extrusion process, a robust quality 
parameter has been needed which could characterize the final quality of each extrusion. For that, a 5 
samples windowing Root Mean Square Error (RMSE) has been computed on which the desired target 
value and the real value in the profilometer. Then, this RMSE is used to determine whether the real 
value is steady near the target for the first time. It has been considered as a robust measure after some 
analysis and it has been used as the output for the fitness function. Then, a final model has been 
achieved with the optimal parameters set to max depth equal to 2 and the number of estimators equal 
to 10. The obtained mean R squared value in the training Cross Validation has been 0.51 and the R 
squared obtained in the test has been 0.41. Besides, when the outliers were discarded these values 
have been improved to 0.54 and 0.64 respectively.  

 

3.2.5 Application and validation Solution 2: Quality analysis tool for the extrusion 

In this solution two main steps are considered including 3 stages represented in Figure 9 and described 
below in more detail: 

• Correlation analysis based on Statistical techniques. 

Correlation is a measure of the strength of the relationship between 2 variables. Among the several 
available correlation statistics, Pearson correlation (abbreviated as “r”) and Spearman rank correlation 
(abbreviated as “ρ” or rho) are probably most widely used. Their coefficients quantify the strength of a 
linear (Pearson) or monotonic (Spearman) relationship. A relationship is monotonic when the value of 
one variable consistently increases (positive correlation) or decreases (negative correlation) as the 
value of the other variable increases. A linear relationship is a special case of a monotonic relationship, 
in which the rate of change is constant. 

Pearson and Spearman correlation coefficients range from –1 to +1, with absolute values increasingly 
closer to 1 indicating an increasingly stronger relationship. Various somewhat arbitrary cut-points have 
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been proposed to categorize the strength of the relationship using descriptors like “weak” (e.g., r < 
0.40), “moderate” (e.g., r = 0.40 to 0.69), or “strong” (e.g., r ≥ 0.70). The interpretation should also take 
into account the confidence interval of the observed coefficient as an estimate of what the correlation 
could plausibly be in the population from which the data were sampled. 

Spearman correlation is recommended when either at least one variable is not normally distributed, or 
the relationship between the variables is not linear, or there are relevant outliers. Spearman correlation 
is based on the ranks of the values of each variable instead of their actual values, and it can basically 
be used for all data that can be ranked, including ordinal and nonnormally distributed continuous data. 

These techniques have been implemented as functionalities for the ‘Solution 2: Quality analysis tool’, 
to compute correlation coefficients, and they are being deployed as a service. From this correlation 
analysis and its visualization, the end-user of the service will be able to have some first indications of 
which controllable parameters of the extrusion process can be related and affect its stability and 
consequently to the quality of the thread.  

For UC2, from the pre-processed data1 (explained earlier in section 3.2.1.), direct correlations can be 
calculated and observed using these functionalities as shown in the following figure. It represents the 
visualization of the calculation of Spearman’s correlation coefficient from the data and it shows that 
there are significant correlations between the type of extrusion determined based on the profilometer 
measure: (1) – rejected, (2) - not steady, (3) – steady, and Extruder 2. It is necessary to highlighted that 
this label is directly related to the quality of the thread. 

 

 

1 data quality analysis, segmentation of the signals for each extrusion, characterization of the signals 
by means of statistical descriptors and having labelled the extrusion type as (1) – rejected, (2) - not 
steady, (3) – steady from the measure of the profilometer 
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Figure 11. Correlation analysis. 

• Cause-effect identification. 

Decision tree algorithms can be used to represent decision making visually and explicitly. The resulting 
model can be an input for decision making. They are among the most popular machine learning 
algorithms given their intelligibility and simplicity, especially when pruning technique is used to reduce 
the size of decision trees by removing parts of the tree that do not provide power to predict. They are 
easy to understand and interpret and can be display graphically in a way that is easy for non-experts or 
analysts to interpret them. In addition, they work well with large data sets, and large amounts of data 
can be analyzed using standard computing resources in a reasonable amount of time.  

A Recursive Partitioning and Regression Tree (RPART) has been implemented- rpart: Recursive 
Partitioning and Regression Trees (r-project.org). The rpart programs build classification or regression 
models of a very general structure using a two-stage procedure; the resulting models can be 
represented as binary trees. The tree is built by the following process: first the single variable is found 
which best splits the data into two groups (‘best’ will be defined later). The data is separated, and then 
this process is applied separately to each sub-group, and so on recursively until the subgroups either 
reach a minimum size (5 for this data) or until no improvement can be made. The resultant model is, 
with a certainty, too complex, and the question arises as it does with all stepwise procedures of when 
to stop. The second stage of the procedure consists of using cross-validation to trim back the full tree. 

https://cran.r-project.org/web/packages/rpart/rpart.pdf
https://cran.r-project.org/web/packages/rpart/rpart.pdf
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From the visualization of the model trained and generated by the RPART algorithm, the end-user will 
be able to obtain some insights about which process parameters (and from which extruder) are affecting 
the stability of the extrusion process and consequently the quality of the material at the end of the 
extrusion. It is feasible to plot the decision tree or even the rule generated and the importance of each 
of the variables used for the decision tree in order to make the prediction (Figure 12). 

 

Figure 12. Cause-effect identification and importance of variables through RPART decision tree algorithm 

As we can see in the generated tree, there are three rules that are generated to determine that an 
extrusion is to be rejected (Figure 13): 
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1. when EX2_speed_slope < 0.0027                                                                                                                                                                         
2. when EX2_speed_slope >= 0.0027 & EX3_speed_slope < 0.0011 & EX2_setpoint_speed < 22                                                                                                        
3. when EX2_speed_slope >= 0.0027 & EX3_speed_slope < 0.0011 & EX2_setpoint_speed >= 

22 & EX3_ON_info is OFF  

 

Figure 13. Rules computed by RPART 

Its main disadvantage is that the result can be ‘weak’, i.e., be submitted to variability, because the 
results can vary depending on the data used to train the model. Nevertheless, as the historical data set 
will increase daily as new extrusion processes are conducted, the decision tree will refine its knowledge 
over time. Furthermore, Random Forest ensemble learning method has been also implemented to 
overcome the problem of RPART. 

Both models can be used to compare results and make better decision-making. As can be seen in the 
next figure, the decision tree shows that certain conditions in the extrusion signals can lead to a rejection 
of the extruded material. However, the final decisions and actions will depend on the team and quality 
managers. 

 

• Early anomaly detection to guarantee the quality of the process and material. 

The statistical tool called "Statistical Process Control" (SPC) has been implemented and it is presented 
below, which will help the end-user responsible for quality to maintain an attitude of continuous 
improvement for the extrusion process, to minimize the rework generated, and to compare production 
with respect to the required specifications. 
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It is a basic tool to study the variation and use the information obtained by taking data from the process 
and its critical characteristics and treat them appropriately. This information allows the end-user to 
monitor with respect to its “natural” variability to detected abnormal deviation. The knowledge and use 
of this tool will allow to evaluate and maintain the stability of a process. Likewise, in a stable 
manufacturing process, the calculation of the process capacity will contribute to achieving the required 
quality level. 

Again, to develop and validate these statistical technologies, the starting point is the pre-processed 
dataset from the UC2.  Statistical control has been performed using the Shewhart chart, which has been 
selected for the calculation and visualization of the statistical control because it does not assume or 
require a normal distribution in the data for the calculation of the limits. This makes it a very robust 
technique, as demonstrated in Wheeler's work using real data with non-normal distributions (Wheeler, 
2009). For the calculation of the control limits, the data of the stabilised extrusions (well-finished 
extrusions with good quality of tread) are calculated as follows: 

𝑈𝐶𝐿 = 𝑥̅ − 3𝑀𝑅 

𝐿𝐶𝐿 = 𝑥̅ + 3𝑀𝑅 

𝑀𝑅 =  
∑ |𝑥𝑖 − 𝑥𝑖−1|𝑚

𝑖=2

𝑚 − 1
 

Subsequently, new individuals are traced from the extrusions made, and those that are within the control 
limits indicates that everything is working as expected. Any variation within the control limits is probably 
due to a common cause: the natural variation that is expected as part of the process. If the data is 
outside the control limits, this indicates that an assignable cause is likely the source of the product 
variation, and something must be changed within the process to fix the problem before defects occur.  

The implementation of these statistical techniques can help to reduce the scrap, react to process drift, 
and make decisions. Now, the pre-processing of the data obtained from the extrusion process is 
intended to be executed daily and for that reason this statistical control cannot be used in real time 
because the required pre-processing cannot be carried out in real time. However, if in a near future the 
preprocessing of the data can be computed in real time, these techniques would allow to react almost 
instantly to such changes in the process and decisions could be made in real time on the shop floor. 

The following figure shows the use and validation of this statistical control technique using the data from 
UC2 and it is seemed that certain extrusions produce a variation (almost all of them correspond with 
extrusions that were rejected) that is not within the normal behaviour of the process and therefore they 
can be identified as outliers that produce a bad quality output in the extruded material. Early detection 
of these situations will allow the team to decide whether to stop the process or to take certain actions 
to mitigate the deviation from normality that can lead to poor quality in the final extruded material. 
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Figure 14. Cause-effect identification 

 

3.3 Porosity prediction in wire Laser Metal Deposition Processes (TEK-
LMD-ADDI) 

This use case has already been presented in Deliverable D2.5: Local automated control for quality 
assurance. However, this task has focused on the resolution of another problem which is also related 
to the same additive manufacturing process: the creation of porosities.  

3.3.1 Use Case description 

Additive manufacturing (AM) is an interesting solution for many companies that produce geometrically 
complex parts. This process consists in the deposition of material layer by layer following a sliced CAD 
geometry. It brings several benefits to manufacturing capabilities, such as design freedom, reduced 
material waste, and short-run customization. 

However, one of the current challenges faced by users of the process, mainly in wire laser metal 
deposition (wLMD), is to avoid defects in the manufactured part (Figure 15), especially the porosity. 
This defect is caused by the extreme conditions and metallurgical transformations of the process. And 
not only does it directly affect the mechanical performance of the parts, especially the fatigue properties, 
but it also means an increase in costs due to the inspection tasks to which the manufactured parts must 
be subjected.  
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Figure 15. Sample of wLDM manufacturing part. 

The monitoring of AM processes provides large amounts of data containing high-frequency information 
of the status of both the manufacturing process and the built parts. Different types of signals are 
acquired at different stages of the process, so that time-referenced and spatially referenced signals can 
be distinguished. A pre-processing and data fusion step is necessary to create the most exploitable 
data set to properly train machine learning algorithms. 

As represented in the first step of Figure 16, the position over time is recorded, which defines the 
material deposition trajectory performed by the robot. The signal is composed of the three univariate 
variables X, Y, Z and the Time. Both variables serve as the reference to merge all data acquired, as 
they include the relation between space and time information. During the material deposition process, 
two types of signals are acquired with reference to the process time. On the one hand, the signals that 
control the laser power and the wire feed speed are recorded by the PLC. On the other hand, images 
of the area where the material is being added are acquired by coaxial monitoring of the melt pool. The 
uniformity of the growth throughout the manufacturing is acquired by geometric scanning. As the 
manufacturing is done layer by layer, after the deposition of each layer, the resulting surface geometry 
is scanned. The obtained 3D point cloud representing the surface is spatially referenced to the trajectory 
and the manufactured part. The porosity is measured offline when the manufacturing of each part is 
finished. The data provided by the 3D Computerized Tomography (CT) is the location of the center of 
each pore and its volume and shape, so it is spatially referenced to the part geometry. That information 
is used to label the recorded data sets and discern the pore observations. 

 

Figure 16. Data collection. 

The data is obtained from the manufacturing of three 3D geometry parts. These are formed by 12 
rectangular layers with dimensions of 16 by 40 mm approximately. Each layer is manufactured using a 
predefined material deposition trajectory consisting of a perimeter strategy and a zigzag for the interior 
filling. The time spent building them ranges between 18.2 and 18.8 seconds. 
 
A set of optimal process parameters has been used, adjusted in a previous experimental process. The 
commands that control these parameters are constant throughout the manufacturing process, the main 
ones being laser power, wire feed speed and movement velocity. Regarding the trajectory, an optimal 
distance between beads that provides uniform growth is determined. Finally, from the experimental 
tests of the selected set of parameters, the theoretical growth of the layers is estimated. 
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3.3.2 Solution for improving and optimizing the quality of the porosity 

Regarding Artificial Intelligence technologies, data-driven techniques for automated data analysis and 
decision making are remarkable. Currently, the efforts in additive manufacturing, and particularly in 
wLMD, are focused on the development of alternatives based on data and AI algorithms to create 
systems capable of detecting defective parts in real time and subsequently stopping the process, saving 
effort and economic costs. The solution proposed for this UC is based on Topological Data Analysis 
and Machine Learning algorithm to predict the defect of porosity for a wLMD process.  

• Experimental dataset and pre-processing 
 

Once the signals are acquired, a data processing and fusion method has been implemented to generate 
the data set (presented in the previous section). The data fusion is based on the trajectory information, 
which enables independent signals of different typologies to be converted into a spatially and temporally 
aligned data set. Therefore, the variables extracted from the signal processing can be linked to a 
moment in the manufacturing process and to a location in the part geometry. Finally, a multi variate 
signal has been elaborated thanks to the concatenation of all the signals.  
 

Table 5: Summary of the measured signals. 

Name Description Type 

Z distortion Vertical distortion of the deposited layer time-series 
values  

Base 
distortion 

Vertical distortion of the base surface. The combination of this data 
and the vertical movement allows the calculation of the variation of the 
working distance. 

time-series 
values  

Overlap C Factor indicating the degree of spacing (or NON-overlap) between 
strands. 

time-series 
values  

Vertical 
Movement 

Vertical displacement (Z-axis) of the robot with respect to theoretical 
height 

time-series 
values  

 
Three parts or pieces (identified as 13, 16 and 18) have been manufactured and the signals were 
acquired during the process for constituting the data set. Afterwards, a CT analysis was performed to 
know the characteristics of the porosity in the samples. Once the data was labelled, 3 different data 
pre-processing have been compared: 

1. No pre-processing 
2. TDA + Pixelwise features 
3. TDA + Colour moment feature extraction 

 
(1) No pre-processing: process parameters captured during the manufacturing process, 

observation by observation 
 

Data captured directly during the manufacturing process (Figure 17) observation by observation has 
been used to train the models. 
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Figure 17. Data capturing from the process (Multivariate Time Series). 

 
 

(2) Topological data analysis (TDA) and Persistence Images Creation 

A rolling window of size 100 has been applied in the multivariate time series skipping 50 values to avoid 
unnecessary overlaps as can be seen in  Figure 18. Notice that the values achieved by Base Distortion 
variable in the first layer are equal to 0 due to its definition. At each execution, a different multivariate 
time series of length T = 100 has been obtained and then, TDA has been applied in these time series. 
The persistence image of each of the available variables has been extracted and saved as jpg format. 
The images are set to be 20 by 20 pixels dimension. 

 

Figure 18. Creation of Persistence Images in Multivariate Time Series. 

 

(3) TDA + Feature extraction from the images 

The third compared pre-processing adds a feature extraction technique on the top of TDA images. 
Common Moments has been the selected colour feature extraction technique because it is one of the 
simplest and most effective strategy. It has been applied in each persistence image of 20x20 pixels, 
that is, in each colour value set {p1, p2, ..., p400}. 
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• Machine Learning algorithms 

Five of the most used supervised classification algorithms in the literature has been implemented and 
compared: the k-Nearest Neighbours (KNN), the Support Vector Machine (SVM), the Decision Tree 
(DT), the Random Forest (RF) and the Extreme Gradient Boosting Ensemble (XGBoost).  

The strategy used to find the most suitable hyperparameters for each algorithm has been the same in 
all the cases. First, a random search provides the knowledge of the parameter space on which the 
optimisation should be done. Once that result is obtained, a grid search is used to assess the different 
combinations of hyperparameters. These searches are done by 3-fold cross validation repeated 30 
times and the classification errors are compared to choose the optimal hyperparameters. The 3-fold 
cross validation randomly divides the entire train set into three subsets, and each subset is tested using 
the model trained with the other two subsets. The performance is assumed to be the average of the 
error metrics obtained in each iteration. Other possibilities of number of folds exist but it is decided not 
to use the classic 10-fold cross validation by agreement with the size of the validation set. In the 
implementation of this solution, the porosity of a whole part must be detected, so the size of the 
validation set will be the amount of data recorded in the entire manufacturing process of that part. Using 
a third of the training data to validate on each iteration is considered more robust than using only a 
tenth. 

• Balancing Train Sets 

After splitting the sets into training and validation sets, the decision has been made to balance the 
classes in the training set. It is a common problem in troubleshooting to have a low number of records 
of the faulty class. However, in this case, the difference between the number of observations with each 
label is extremely high as seen in the Figure 19. There is a risk of missing relevant information if 
subsampling techniques are applied directly on the raw dataset and the resulting dataset may be too 
small for the model to learn. Similarly, little relevant data can be added unnecessarily with oversampling 
techniques. For this reason, it has been decided to randomly subsample the majority class. 

 

Figure 19. Class imbalance  

3.3.3 Application and validation in improving and optimizing the quality of the porosity 

of wLMD process 

These algorithms have finally been used to learn from the data sets that have been obtained from the 
three transformations mentioned above, after the balancing of the data: 

(1) No pre-processing. From the data captured directly during the manufacturing process 
observation by observation. In this case, the most accurate classification in this process has 
been obtained by the Random Forest algorithm. 
 

(2) Topological data analysis (TDA) and Persistence Images Creation. The 20x20 values of 
the persistence images are written as a vector of length 400. Each component of that array was 
used as an input variable of the classification model. The best fit was reached in both parts by 
KNN classifier. 

 
(3) TDA + Feature extraction from the images. Colour moments - the most accurate 

classification was obtained with RF but hey cannot be considered good enough to generate a 
porosity diagnosis model. 
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Following the results obtained, the porosity is considered a local fault that is unrelated to the relative 
position of its occurrence. For that reason, data from the three parts can be mixed without loss of 
generality. That is, each observation can be considered independent, without considering the values 
around it or the piece to which it belongs. So, data from parts 13, 16 and 18 are combined and a RF 
classification is done in the new data set. The confusion matrix of this classification is shown in Figure 
20. In that case, the Accuracy value was 0.962 and the Recall metric got 0.853. This result shows that 
the RF model allows a correct detection of the pores in the manufactured parts. Therefore, it is possible 
to estimate the existence of pores in the parts and it implies a potential substitute for the classical 
tomography process.  

 

Figure 20. Confusion matrix from classification of three parts combined- RF results. 

There are some lines of activity and research to continue with the work in the future. The first one, as it 
is expected to have a larger number of monitored and tomographed parts, is to train the classification 
models with data from several parts and then validate the performance of the fitted models using data 
from an entire part. At this point, it is important to emphasise the importance of data coming from parts 
manufactured under the same conditions, since any variation in the configuration of the input 
parameters could significantly modify the behaviour of some data, adding variability to the data set and 
avoiding models from capturing those behaviours. 

The following figure shows the position of the estimated pores (red points) by the Random Forest model 
in one part. In this case, 273 pores have been estimated in a part of 12025 points recorded. So, the 
porosity proportion is 0.023. It is assumed that this part has enough quality, and it is not required to 
send it to analyse by a tomography to identify defects. 
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Figure 21. Porosity prediction over the manufacturing time of the part. 

During this use case, a service has been developed during the AI_PROFICIENT project. The model for 
the prediction of pores, based on the Random Forest algorithm, has been deployed in the infrastructure 
of Tekniker. After each manufacturing of a part, the operator can verify the quality of the part without 
the need of computed tomography. Automatically, on-demand, an .html report is generated with the 
predictions made by the model. 

 

4 Conclusions  

At present, ensuring the quality of processes and products performs a very important role worldwide. It 
is the key issue to success for industrial sectors, where it is necessary for the final product to have a 
quality control, normally, based on stringent specifications. Especially in industrial manufacturing, 
companies strive to improve their processes and products by ensuring quality and to reduce the costs; 
identifying and controlling any aspect or situation that may cause the final product to be unacceptable, 
working on finding innovative and profitable solutions and technology to prevent errors and defects in 
advance. 

At the same time, digital technologies and industrial IoT systems, sensors and devices that collect data 
from the infrastructure of the factories and companies, improve opportunities for the use of data and AI 
technologies for data analysis. These artificial intelligence technologies allow the data obtained to be 
combined and put it in value, from the extraction and transformation of the data and the use of machine 
learning algorithms. 
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Thanks to the increasing volume of data held today by the companies, these approaches based on 
Artificial Intelligence, the information extraction and data analysis make it possible to detect problems 
automatic and friendly which also provides added technical support to the operator. They will not replace 
the knowledge of the operator, gain over the years, but they can provide the necessary tools to support 
the decision-making to improve processes and products. 

Considering all this, the deliverable has presented different industrial use cases with problems still 
pending to be solved, in which the use and combination of IA technologies allows to improve the quality 
of processes and products in an extrusion process and in additive manufacturing process. 
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