

AI-PROFICIENT Artificial intelligence for improved production efficiency, quality and maintenance

JUNE 8TH, 2023

BRINGING AI TECHNOLOGY TO THE PRODUCTION LINE

AI·PROFICIENT

Artificial intelligence for improved production efficiency, quality and maintenance

Production Process Optimization through Quality Analysis Tools and Explainable Al

Dea Pujić, Katarina Stanković, Nikola Tomašević

Institute Mihajlo Pupin

This product is part of a project that has received funding from the European Union's Horizon 2020 research and innovation program under grant agreement No 957391.

Agenda

- Institute Mihajlo Pupin
- Use case description
- Workflow
- Proposed Solution
- Results

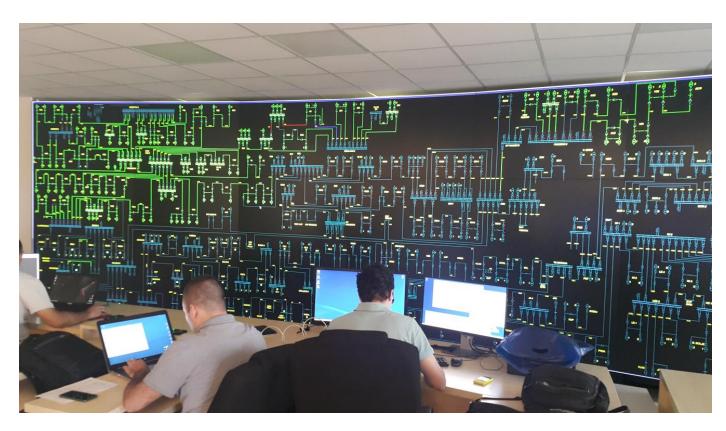
Institute Mihajlo Pupin

Institute Mihajlo Pupin

- One of leading Serbian R&D institution in information and communication technologies (ICT)
- One of the biggest and oldest (1946) R&D Institute in ICT area in whole Southeastern Europe
- 500+ employees, 350+ researchers & engineers
- 80+ % of turnover via Technology Transfer
- Affiliated to the University of Belgrade
- EU Commissionaire "Pupin as the best practice example for bridging academia and industry"

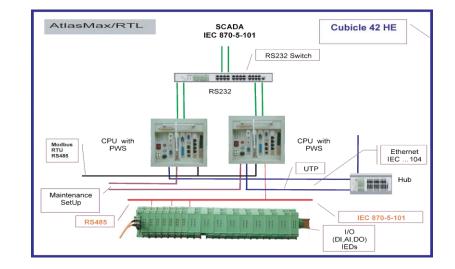
Our solutions

MAIN PROGRAMS:


- Information Systems: E-government solutions, Document Management Systems, Decision Support Systems, AI based systems
- Process Control Systems: Power Production, Transmission and Dispatching Control and Supervision Systems, Water Supply and Management Systems
- Traffic Management Systems: Urban Traffic Control, Tunnel Management, Highway Pay-Toll Systems, Access control system
- Railway Program: Axle Counter, LED signals, HMI solutions
- Defense Program: Simulation and Training Systems, Air War Gaming Systems, Radar signal processing systems, Electronic Surveillance Systems, Ballistic Analyzer
- Other Programs and Activities: Robotics, Security, Embedded Systems, Surveillance, Alert & Warning Systems, etc.

Our clients

- Serbian Power Utility
- Road, railway and air traffic authorities
- Public administration (egovernment)
- Ministry of Justice, Ministry of Interior
- Serbian Armed Forces
- Oil, gas and mining companies
- Process industries (food processing industry, tanneries, cement factories, etc.)
- Water Utility



Process control systems

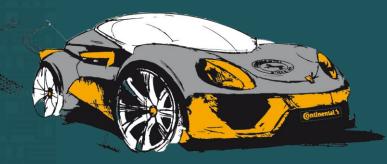
TECHNOLOGY

- 40 years in Process Control Systems
- Supervisory Control and Data Acquisition Systems (SCADA) and Digital Control Systems (DCS)
- Process Optimization
- Decision Support Systems
- Proprietary SCADA SW (VIEW®) and HW solutions (ATLAS®)
- Application of IMP's proprietary HW and SW solutions in various industrial domains

JOINING FORCES WITH EU-BASED R&D PARTNERS

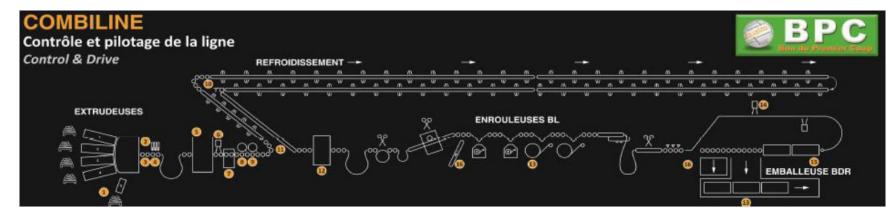
108 International Research Projects, over 500 partners

- 7 HORIZON EUROPE (LEGOFIT, ECHO, FEDECOM, R2D2, IntelliLung, POLICY ANSWERS, OMEGA-X)
- 21 H2020 (NEON, AI-PROFICIENT, HESTIA, SINERGY, TRAPEZE, BorderUAS, PLATOON, TRINITY, IDEAS, REACT, LAMBDA, FeeelAgain, RESPOND, INBETWEEN, SlideWIKI, FLIRT, EEN INNO, FS4SMIH, EENSerbia, EENClientInnoJourney, EENInnoSJourney)
- 22 FP7 projects (REFLECT, AgroSENSE, META-NET, WBC-INCO-NET, HydroWEEE, ICT-WEB-PROMS, HELENA, EMILI, ENERGY WARDEN, PROCEED, LOD2, CASCADE, H-WEEE-DEMO, EPIC-HUB, SPARTACUS, GenderTIME, ResearchersNight, GeoKNOW, Danube INCO.NET, NoSQL-NET, Trafoon)
- 7 CIP/EIP (CESAR, EIIRC, GREEN, WEEEN, ICIP, IMAGEEN, Share PSI 2.0)
- 1 IPA Adriatic (PACCINO)
- 1 ERASMUS+ (BEST)
- **4 SEE** (Intervalue, FORSEE, WBINNO, TV-Web)
- 3 TEMPUS (CARE, HUTON, INCOMING)
- 8 COST Actions (IC1004, IC1304, CA16116, CA15104, NexusLinguarum, Distributed Knowledge Graphs, VOICES, INTERACT)
- 1 RSEDP2 (EMC)
- 1 UNDP (Smart Land)
- 3 FP6 projects (SARIB, PROMETEA, Web4WeB)
- 3 Interreg DANUBE (MOVECO, NewGenerationSkills, EDU-LAB)
- 2 EC Interreg/CADSES projects (I2E, STRIM)
- 6 IPA (EPS, Tax, Justice, Agro, POM, APML)
- 18 Bilateral projects (2 Switz., 3 France, 5 Germany, 1 Cyprus, 1 Greece, 1 Norway, 1 Portugal, 1 Slovenia, 3 China)



IPA INSTRUMENT FOR PRE-ACCESSION ASSISTANCE

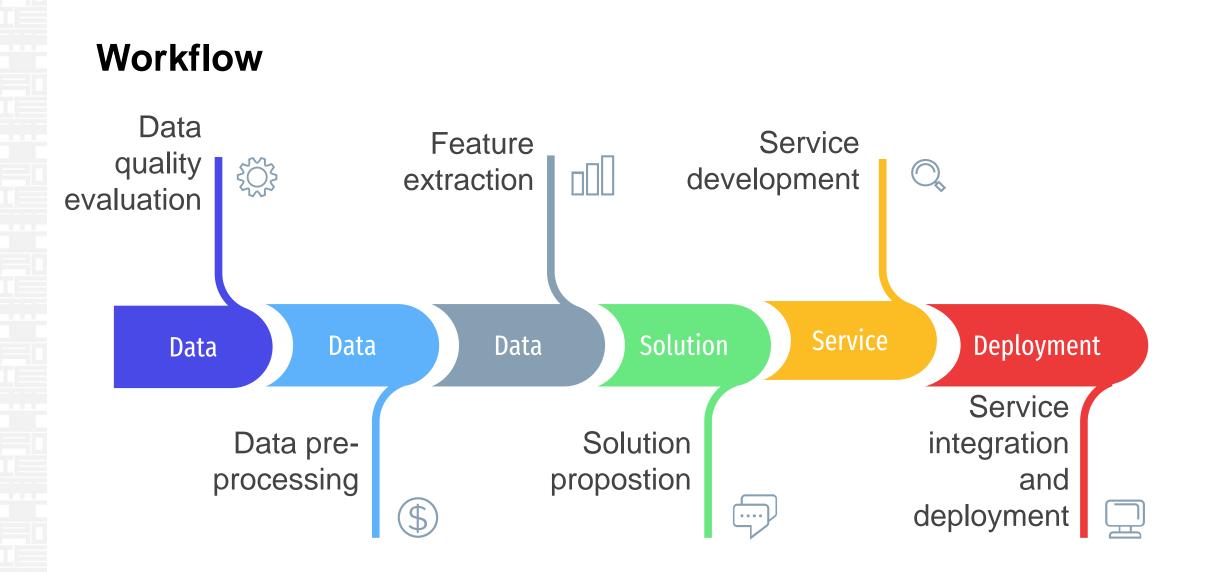
Introduction



PROPERTY AND

Use case description

- Focus on the line for thread production in the Continental factory
- During the production process, occasional product deviations out of the desired scope are inevitable, and, when it happens, the operator in charge of that product characteristic, takes actions
- The main goals of this use case were:
 - the development of a quality analysis tool for the improvement of final product quality characteristics
 - automation of the process of investigating the causes of quality deviations and providing proactive suggestions for preventing degradation

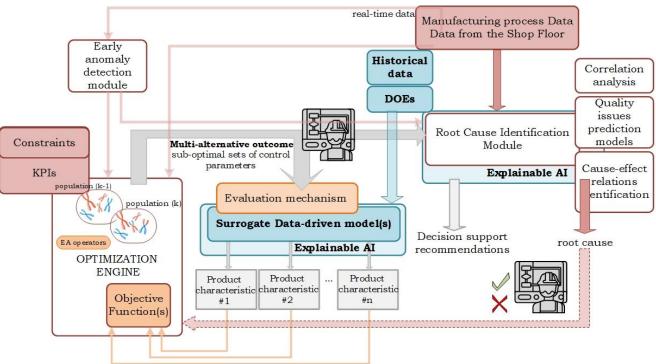


Use case description

- Different quality metrics (length, weight, profile thickness, wings deformation level, etc.) are affected by different process variables, machine settings, breakdowns, and certain operators' decisions
- The idea was to provide a recommendation system that would maintain these characteristics within the predefined bounds, so that quality is assured

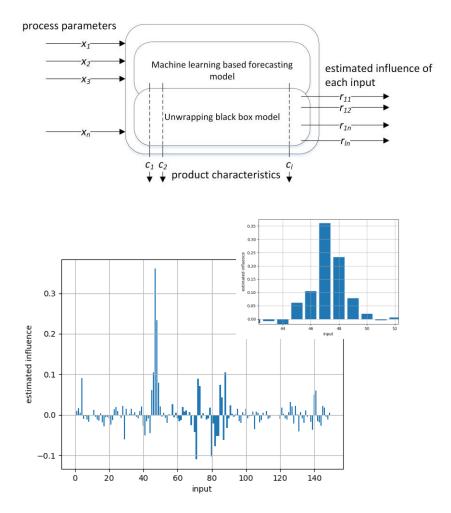
Product characteristic 🛫	Influent factor 1	Influent factor 2	Influent factor 3	Influent factor 4	Influent factor 5	Influent factor 6	Influent factor 7	6
Weight	Machine speed	Screw speed	Base mix storage time	Final Mix storage time	% of remill in mix	Mix viscosity	Screw pressure	Т
Detection Zone	Supervision pilot	Supervision pilot	Mixing room	Mixing room	EWM	QDV	Supervision pilot	0
Cold width	Conveyor speed	Screw speed	Mix viscosity	Tool wear	Tool conformity	Mix temperature	Tool position	%
Detection Zone	Supervision pilot	Supervision pilot	QDV	Visuel opérateur	Check info CGRS	Supervision pilot	Operator visual check	
Profile thikness	Machine speed	Screw speed	Conveyor speed	Base mix storage time	Final Mix storage time	% of remill in mix	Mix viscosity	s
Detection Zone	Supervision pilot	Supervision pilot	Supervision pilot	Mixing room	Mixing room	EWM	QDV	Su
deformation of wings	Screw speed	Mix viscosity	Base mix storage time	Final Mix storage time	Raw material dealer	Mix temperature	Tool position	%
Detection Zone	Supervision pilot	QDV	Mixing room	Mixing room	Mixing room	Supervision pilot	Visuel opérateur	
Length	Conveyor speed	Cut length	Machine speed	% of remill in mix	Mix viscosity	Cooling unit temperature		
Detection Zone	Supervision pilot	Operator visual check	Supervision pilot	EWM	QDV	Supervision pilot		+
Base thickness	Pression mélange	Base screw speed	Base mix storage time	Final Mix storage time	% of remill in mix	Mix viscosity	Tool wear	M
Detection Zone	Supervision pilot	Supervision pilot	Mixing room	Mixing room	EWM	QDV	Check info CGRS	S
blocked CCB	Screw pressure	Tool cleaning	Tool conformity	Mix temperature				

Workflow and the proposed solution


Proposed solution (1)

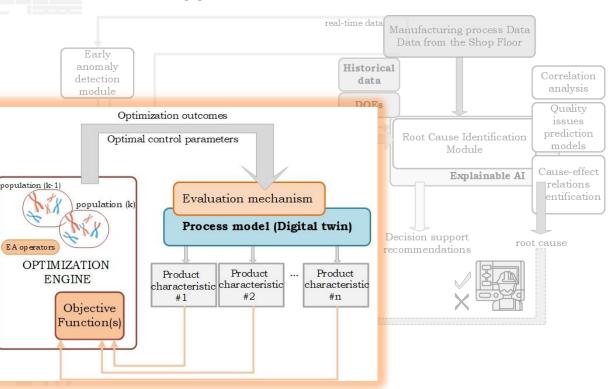
- (Early) anomaly detection module

 for estimating expected degradation or detecting the existing one in (close to) real-time environment:
 - Short-term post-hoc anomaly analysis (SPAA)
 - Surrogate data-driven module (SDE ...,
- Generative holistic optimization (GHO) -


(close to) real-time optimization of current process set up with the aim of preventing degradation or restoring product quality

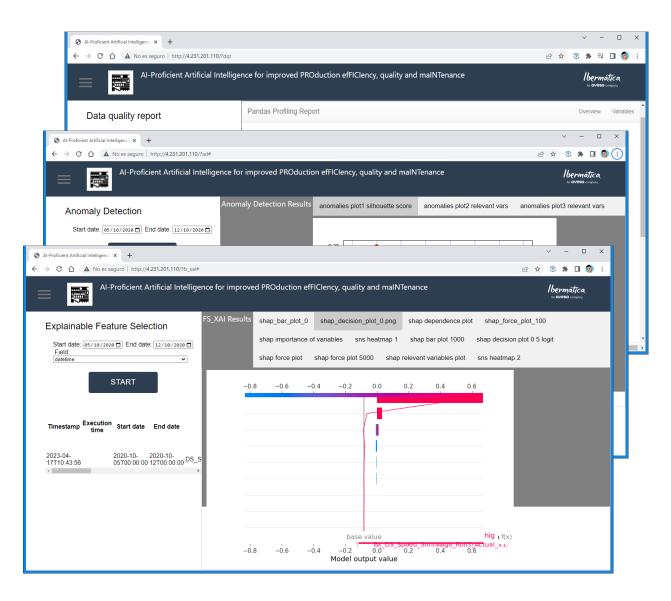
- Post-hoc explainable anomaly analysis (PEAA) for process manager and thorough offline data analysis
- Feedback system included

Proposed solution (2)

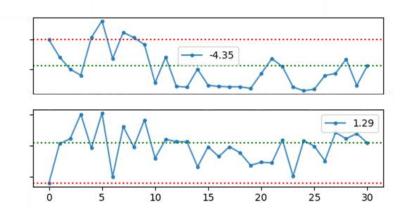

- Surrogate data-driven module (SDDM) continuously monitoring process variables for detecting potential degradation in various product characteristics
 - when degradation expected, optimization is run for adapting process parameters
 - apart from the degradation forecast, its most probable cause is determined via explainable AI (XAI) techniques
 - combination of various performable ML techniques and XAI approaches – LIME, DeepLIFT, etc.
- Short-term post-hoc anomaly analysis (SPAA) – analyzing current product characteristics and process variables

Proposed solution (3)

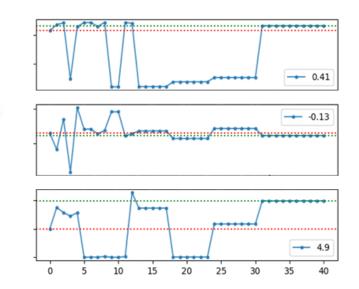
 Generative holistic optimization (GHO)

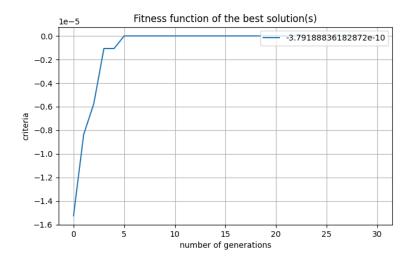

 envisioned to be the core of the recommendation system which provides suggested parameters updates

- GHO obtains current line setup, estimated or realized degradation, the most probable cause of it and provides updated process parameter set up
- Close to real-time
- The main characteristics of the proposed optimization approach:
 - multi-objective optimization method based on evolutionary algorithms
 - assisted by time-series clustering for improved recommendations
 - recommendations are be based on the process digital twin (SDDM)
 - for performance improvement over time and service adjustment in accordance with the process change, human feedback is included


Proposed solution (4)

- Post-hoc Explainable Anomaly Analysis (PEAA):
 - envisioned for process manager thorough post-hoc data analysis
 - provides data quality report, anomaly detection and feature selection options – different ML techniques
 - · works on the historical data
 - includes explainable artificial intelligence techniques (LIME, ELI, SHAP)




Results

Results

- Example of the optimization outputs run for optimizing thickness and width
- Number of the adjusted process parameters could vary – balance with number of changed parameters and time of convergence
- In the presented case, convergence was reached after 30 generations with two adjusted parameters and 40 generations with three parameters
- Optimization could **offer couple** of **recommendations** for operator to choose the right set

Thank you for you attention!

Dea Pujić dea.pujic@pupin.rg

AI-PROFICIENT Artificial intelligence for improved production efficiency, quality and maintenance

JUNE 8TH, 2023

BRINGING AI TECHNOLOGY TO THE PRODUCTION LINE