Publications

  • Chaoub, A., Voisin, A., Cerisara, C., & Iung, B. (2021). Learning Representations with End-to-End Models for Improved Remaining Useful Life Prognostic. PHM Society European Conference, 6(1), 8. https://doi.org/10.36001/phme.2021.v6i1.2785
    Download

  • López de Calle – Etxabe, K., Gómez – Omella, M., & Garate – Perez, E. (2021). Divide, Propagate and Conquer: Splitting a Complex Diagnosis Problem for Early Detection of Faults in a Manufacturing Production Line. PHM Society European Conference, 6(1), 9. https://doi.org/10.36001/phme.2021.v6i1.3039
    Download
  • Esnaola-Gonzalez, Iker. (2021). Can Ontologies help making Machine Learning Systems Accountable?. 10.13140/RG.2.2.29339.18722.
    Download
  • Nguyen, Van-Thai & DO, Phuc & Voisin, Alexandre & Iung, Benoît. (2021). Reinforcement Learning for Maintenance Decision-Making of Multi-State Component Systems with Imperfect Maintenance. 2142-2149. 10.3850/978-981-18-2016-8_304-cd.
    Download
  • L. Berbakov and N. Tomašević, “Internet of Things Platform Architecture for Smart Factories,” 2021 International Balkan Conference on Communications and Networking (BalkanCom), 2021, pp. 157-160, doi: 10.1109/BalkanCom53780.2021.9593239.
  • López de Calle – Etxabe Kerman, Garate – Perez Eider, Arnaiz Aitor, “Towards a Circular Rotating Blade Wear Assessment Digital Twin for Manufacturing Lines”, IFAC-PapersOnLine, Volume 55, Issue 2, 2022, Pages 561-566, ISSN 2405-8963, https://doi.org/10.1016/j.ifacol.2022.04.253.
    Download
  • Anderson, Marc, and Karën Fort. (2022) 2022. “Human Where? A New Scale Defining Human Involvement in Technology Communities from an Ethical Standpoint”. The International Review of Information Ethics 31 (1). Edmonton, Canada. https://doi.org/10.29173/irie477.
    Download

  • Van-Thai Nguyen, Phuc Do, Alexandre Vosin, Benoit Iung, Artificial-intelligence-based maintenance decision-making and optimization for multi-state component systems, Reliability Engineering & System Safety, Volume 228, 2022, 108757, ISSN 0951-8320, https://doi.org/10.1016/j.ress.2022.108757.

  • Alaaeddine Chaoub, Christophe Cerisara, Alexandre Voisin, Benoît Iung. Towards interpreting deep learning models for industry 4.0 with gated mixture of experts. 30th European Signal Processing Conference, EUSIPCO 2022, Aug 2022, Belgrade, Serbia. (hal-03785546)
    Download

  • Anderson, M.M., Fort, K. From the ground up: developing a practical ethical methodology for integrating AI into industry. AI & Soc (2022). https://doi.org/10.1007/s00146-022-01531-x.

  • Marc M. Anderson, Some Ethical Reflections on the EU AI Act, IAIL 2022: 1st International Workshop on Imagining the AI Landscape After the AI Act, June 13, 2022, Amsterdam, Netherlands, CEUR Workshop Proceedings (CEUR-WS.org, ISSN 1613-0073), Vol-3221
    Download

  • Anderson, M.M., Fort, K. (2023). Ethical Internal Logistics 4.0: Observations and Suggestions from a Working Internal Logistics Case. In: Borangiu, T., Trentesaux, D., Leitão, P. (eds) Service Oriented, Holonic and Multi-Agent Manufacturing Systems for Industry of the Future. SOHOMA 2022. Studies in Computational Intelligence, vol 1083. Springer, Cham. https://doi.org/10.1007/978-3-031-24291-5_25

  • Marc M. Anderson. Rare Opportunity or History Revisited? The Pitfalls and Prospects for Ethical AI in light of Public Ethical Responses to the Telegraph. Studia Philosophica Wratislaviensia, vol. 18, no. 3. [Forthcoming]

  • Marc M. Anderson. Exploring the Idea of Ethical Sustainability for Digital Manufacturing. Service Oriented, Holonic and Multi-Agent Manufacturing Systems for Industry of the Future. Proceedings of SOHOMA 2023. Springer Studies in Computational Intelligence. [Forthcoming]

  • I. Fernandez, K. Lopez de la Calle., E, Garate, R. Benzmuller, M. Kessler, M. Anderson. Human-feedback for AI in Industry. CENTRIC 2023, 16th International Conference on Advances in Human-oriented and Personalized Mechanisms, Technologies, and Services (Valencia, Nov. 23). [Forthcoming]

  • Izaskun Fernandez, Cristina Aceta, Eduardo Gilabert, Iker Esnaola-Gonzalez, FIDES: An ontology-based approach for making machine learning systems accountable, Journal of Web Semantics, Volume 79, 2023, 100808, ISSN 1570-8268, https://doi.org/10.1016/j.websem.2023.100808.
    Download